
CHAPTER 3
A CRASH COURSE IN ZTREE

Lawrence Choo, PhD



• Introduction to z-tree
• Ztree architecture 
• How to setup your zleafs

• Example I: The Public goods game
• Basic programming 
• Generating Input / Output variables

• Example II: The Ultimatum Game
• Grouping mechanism (more programming) 
• Sequential decision making
• Rich text format (rtf) coding

• Class Exercise I: Second Price Auction

LESSON PLAN



• Creating multiple leafs on a screen
• Example III:  2x2 Normal form game

• Laying out Grid matrix
• Random round payment 

• Example IV:  Search Lottery
• Array programming and complex loops
• Programming a Survey

• Class Exercise II: Jackpot machine (A fair jackpot)
• Example V: Dutch Auction

• the “later” function
• Class Exercise III: English Auction

LESSON PLAN



• Example VI: Continuous Double Auction
• Introduction to the Contract table

• Example VII: Random Stopping Public Goods Game
• Creating infinite length games

• Example VIII: Complex Move games
• Inserting Figures / Videos
• Designing complex sequential move formats

• Example IX: Chat Box
• Example X: 2-Dimesion Graphing

• Bars
• Lines

• Example XI: Graphing Pie Charts
• Exercise IV: Vernon Smith, Gerry Suchanek and Arlington Williams (1988) 

design with Graphed prices.

LESSON PLAN



INSTALLING ZTREE
AND A BRIEF 

INTRODUCTION



CLIENT-SERVER ARCHITECTURE



• Create multiple shortcuts for the zleaf

• Go into the properties of each shortcut 
leaf click on the properties dialog, click on 
the shortcut tab and append the

.exe /name Yourleafname

• Do this for every shortcut leafs giving a 
unique name

INSTALLING “LEAFS”



WHAT IS IN AN EXPERIMENT

Session
• The whole experiment. This might contain multiple treatments

Treatment

• A specific treatment setup. 
• A treatment might contain multiple periods (i.e., rounds)

Period

• A specific period. 
• This might contain multiple stages 

Stage
• The lowest level, where subjects input / output variables are collected



HOW IS DATA STORED

Name written Reset Freq. Description

global Every
period

Every 
Period

Input / Output variables that affect ALL 
subjects

subjects Every 
period

Every 
Period

Input / Output variables that affect a specific 
subject

contract Every
period 

Every Period Input / Output variables that affect a specific subject
within a period

summary Every
period

Every
Treatment

Input / Output variables that affect a specific subject
over a treatment

session Every
treatment

Every Session Input / Output variables that affect a specific subject
over a Session

Data is stored in numerical values in “pre-specified  Tables”. 

ztree also allows for user created tables in addition to the above



EXAMPLE 1

THE PUBIC 
GOODS GAME



EXAMPLE: PUBLIC GOODS GAME

ui = E � xi +

P
i xi

N
⇥M

Period NumPeriods RepeatTreatment M E N

2 5 0 1.2 10 4

Period Subject Group Profit TotalProfit Participate x sumx u

2 4 1 12.65 18.65 1 2 15.50 12.65

2 5 2 11 15.45 1 2 10 11

2 6 2 12 20.10 1 1 10 12

2 7 2 9 10.00 1 4 10 9

2 8 2 16 22.12 1 3 10 16

globals table

subjects table



SET BACKGROUND

• 4 Subjects

• All subjects in same group

• t = 2 periods 



> Treatment > New program

N = 4; //no. of players in a group

E = 10; // endowment

M = 1.2; // multiplier

DEFINE INITIAL VALUES
(globals table)



> Treatment > New program

X = 0; //define variable
SUMX = 0; 
U = 0;

DEFINE INITIAL VALUES
(subjects table)



CREATE NEW STAGES

• Select the most recent stage

> Treatment > New stage

• You can add as many stages as necessary

• Create “Decision stage”

• Create “Results stage”



• A box contains 

• Output variables that subjects see

• Input variables that subjects enter

Active screen > Treatment > New Box > Standard Box

DECISION STAGE
(create new box)



GENERAL
(box layout)

• Box can be position one after 
another 

• Types of boxes:

1. Standard box

2. Grid box

3. Header box

4. Help box

5. History box

6. Container box

7. Calculator button box



GENERAL
(box layout – Container Box)



GENERAL
(box layout – Grid Box)



• Creating a Output variable

Standard box > Treatment > New item

DECISION STAGE
(Putting items in Box)

Text that subjects see

“Your Endowment”

The output variable “E”

How the output variable is 
presented:

“1” : no decimal places

“.1” : 1 decimal place

“.01” : 2 decimal places



• Creating a input variable

Standard box > Treatment > New item

DECISION STAGE
(Putting items in Box)

The input variable “X”

How subjects input the data

.01 : 2 decimal places, last 
digit is multiple of 1

10: no decimal, variable is 
multiple of 10

5: no decimal, variable is 
multiple of 5



GENERAL
(input / output formats)



• Creating a button

Standard box > Treatment > New Button

DECISION STAGE
(Putting items in Box)

A button tells ztree to 
collect the data and let the 
subject leave the stage.

• Easy to forget

• Without a button, 
subjects get ”stuck” on 
the screen 



run > start treatment

DECISION STAGE
(trial the Decision Stage)



GENERAL
(How to ”force subjects to leave a stage”?)

• run > client’s table

• Double click 

• run > leave stage

Double click here



RESULTS STAGE
(collect the data from other subjects)

Results Stage> Treatment > New program 

(subjects table)

• Find the contributions of all other players 
within the same group

SUMX = sum(same(Group), X);

• Compute payoff

U = E - X + (SUMX)*M/N;

Alternative code

SUMX = average(same(Group), X);

U = E - X + SUMX*M;



GENERAL
(how programs run)

M = 20;
x = M – g;

g M x

5 0 0

12 0 0

7 0 0

g M x

5 20 15

12 0 0

7 0 0

g M x

5 20 15

12 20 8

7 0 0

g M x

5 20 15

12 20 8

7 20 13



GENERAL
(how programs run)

M = 20;
x = M – g;
y = sum(x);

g M x y

5 0 0 0

12 0 0 0

7 0 0 0

g M x y

5 20 15 15

12 0 0 0

7 0 0 0

g M x y

5 20 15 15

12 20 8 23

7 0 0 0

g M x y

5 20 15 0

12 20 8 23

7 20 13 36



GENERAL
(how programs run)

M = 20;
x = M – g;

g M x y

5 20 15 0

12 0 0 0

7 0 0 0

g M x y

5 20 15 0

12 20 8 0

7 0 0 0

g M x y

5 20 15 0

12 20 8 0

7 20 13 0

New program
y = sum(x);

g M x y

5 20 15 36

12 20 8 0

7 20 13 0

g M x y

5 20 15 36

12 20 8 36

7 20 13 0

g M x y

5 20 15 36

12 20 8 36

7 20 13 36



GENERAL
(Some use scope operators)

Y = sum ( [condition] , variable );

Y = average ( [condition] , variable ); 

Y = minimum ( [condition] , variable );

Y = maximum ( [condition] , variable );

Y = median ( [condition] , variable );

Y = find ( [condition] , variable ); 

Y = count ( [condition] ); 



RESULTS STAGE
(Create New Box and Output Variabels)

• Active screen > Treatment > New Box > Standard Box

• Standard box > Treatment > New item

• Label:  Your Contribution | Variable: X

• Standard box > Treatment > New item

• Label:  Total contribution in this period | Variable: SUMX

• Standard box > Treatment > New item

• Label:  Your Payoffs | Variable: U

• Standard box > Treatment > New Button



EXAMPLE I I

THE ULTIMATUM 
GAME



Design Objectives

• 4 Subjects, 2 groups

• 2 period

• At each period, random allocation to Proposer or Responder

• Random grouping

• Pot = 10

DESIGN OBJECTIVES



> Treatment > New program (global table)

POT = 10; //Amount of money to be shared

DEFINE INITIAL VALUES

> Treatment > New program (subjects table)

TYPE = 0; //1=Proposer, 2=Responder

OFFER = 0; //Proposer’s offer

RESPOND = 0; //Responder’s respond 1=Accept 2=Reject

U = 0; //Payoffs



MATCHING
(BRUTE FORCE)

>Treatment > Parameter table 



MATCHING
(a better approach to random grouping)

> Treatment > New program (subjects table)

G = 2; //Number of subjects in a group

r = random(); //Generate a random number between 0 and 1

Create a new program after random variable is created.

> Treatment > New program (subjects table)

RANK = count (r >= :r);

Group = roundup ( RANK / G, 1); 

> Treatment > New program (subjects table)

TYPE = count(same(Group) & r>= :r);

But there might be ties !!!!!



GENERAL
(scope operator)

Y = count (g>=: g);

Subject g y

1 5 3

2 12 0

3 7 0

Subject g y

1 5 3

2 12 1

3 7 0

Subject g y

1 5 3

2 12 1

3 7 2



MATCHING
(a better approach to random grouping)

> Treatment > New program (subjects table)

G = 2; //Number of subjects in a group

> Treatment > New program (subjects table)
Sum_No_Tie = sum(Subject);

repeat { 

subjects.do { 

r = random(); 

} 

subjects.do { RANK = count ( r >= :r); } } while (Sum_No_Tie

!= sum( RANK ));

> Treatment > New program (subjects table)

Group = roundup ( RANK / G, 1); 

TYPE = count(same(Group) & r>= :r);



GENERAL
(ztree build in grouping)

Partner: Fixed Matching

Stranger: Random Matching

Absolute Stranger: Random Matching + New Stranger



GENERAL
(useful functions)

Y = if ( k < 5 | k >= 10, 1, 10 );

Y = abs ( c -d );

Y = round ( a, 0.5 );

Y = roundup ( a, 0.5 );

Y = exp ( random() );

Y = sqrt ( b ^ 2 );

Y = max ( ln ( x ), log ( y ) );



SEQUENTIAL PLAY

STAGE 1
• Subjects learn about their types (Simultaneous)

STAGE 2

• Proposer: Makes an offer
• Responder: -

STAGE 3

• Proposer: -
• Responder: See Proposer’s offer and chooses to accept or reject

STAGE 4
• Payoffs are realised (Simultaneous)



• Create multiple



Solution 1: Create two “standard box” and input items
• Label: You are the Proposer in this period
• Label: You are the Responder in this period
in each of the boxes. Use display condition to determine who sees what 

STAGE 1
(Subjects learn about their types)

Only subjects with 
TYPE=1 will see the 
items in this box



Solution 1I: create a generic box and in the label section of new item, include

<>{\rtf\fs20\qc You have been assigned to Group <Group|1> 
and is the <TYPE|!text: 1=”Proposer"; 2=”Responder"> in 

this period}

STAGE 1
(Subjects learn about their types)



GENERAL
(rtf codes)



STAGE 2
(Proposer makes offer)

We only want the Proposer to enter stage 2

> Treatment > New program (subjects table)

Participate = if(TYPE==1, 1, 0);



STAGE 3
(Responder Decides)

We only want the Responder to enter stage 3

> Treatment > New program (subjects table)

Participate = if(TYPE==2, 1, 0);

OFFER = find(same(Group) & TYPE==1, OFFER);



STAGE 4
(Compute payoff)

> Treatment > New program (subjects table)

RESPOND = find(same(Group) & TYPE==2, RESPOND);

if(RESPOND == 2){U=0;}

elsif(RESPOND == 1)

{ 

if(TYPE==2) {U=OFFER;}

elsif(TYPE==1) {U=POT-OFFER;}

}



STAGE 4
(Compute payoff)



CLASS EXERCISE I

SECOND PRICE 
AUCTION



• N=4 bidders

• Valuations between [0,100] uniform

• Bidders are endowed with E = 200

• 2nd price auction

• In the event of a tie, random allocation amongst all claimants 

TASK

Some useful scope operators

Y = maximum(same(Group), X);

Y = maximum(same(Group) & not(same(Subject)), X);

Y = sum(same(Group), X);



POTENTIAL SOLUTION



POTENTIAL SOLUTION



Day 1I
• Creating multiple leafs on a screen
• Example III:  2x2 Normal form game

• Laying out Grid matrix
• Random round payment 

• Example IV:  Search Lottery
• Array programming and complex loops
• Programming a Survey

• Class Exercise II: Jackpot machine (A fair jackpot)
• Example V: Dutch Auction

• the “later” function
• Class Exercise III: English Auction

LESSON PLAN



CREATING 
MULTIPLE LEAFS 
ON A SCREEN



MULTIPLE LEAFS



MULTIPLE LEAFS

• Open ”notepad”

• Write command lines 

• Save file with suffix .bat (e.g,  P4.bat)

• Open ztree and execute bat file

GENERAL
(Creating multiple leafs)



EXAMPLE I I I

2X2 NORMAL 
FORM GAME



DESIGN

Today Tomorrow

Today 200, 200 400, 0

Tomorrow 0, 400 R, R

• R can be either 300, 350, 400, …, 800 with equal probability

• Subjects play 3 periods.

• Control question before starting the experiment

• Random period payment

** Note: Payoffs are symmetric, thus we don’t have to worry about types.



INITIAL VALUES
(globals table)

> Treatment > New Program (globals) 

Outcome1 = 0;

Outcome2 = 200;

Outcome3 = 400;

Rand = random();

R = roundup(Rand*11, 1)*50 + 250;

Outcome4 = R;

Last_Period = 3;

Rand = random(); Y = Rand*11 X = roundup(Y , 1) R = X*50+250

0.13425 1.4767 2 350

0.85932 9.4523 10 750

0.002 0.022 1 300



INITIAL VALUES
(subjects table)

> Treatment > New Program (subjects) 
X = 0; //Own decision
XO = 0; //Decision of other group player
U = 0; //Payoff for the period 
if(Period==1)
{
rr = random();
Pay_Period = roundup(rr*Last_Period, 1)+0;
Pay_Amount = 0;

}
elsif(Period>1)
{
Pay_Period = OLDsubjects.find(same(Subject), Pay_Period);
Pay_Amount = OLDsubjects.find(same(Subject), Pay_Amount);

}



MULTIPLE LEAFS

• The “lifespan” of the subjects table is only 1 period – reset at start of each period

• The command “OLDsubjects” accesses the subjects table in the immediate previous 
period – older periods are not accessible.

GENERAL
(accessing data from previous period)

Period Subject Group X Y

1 1 1 3 0

1 2 1 6 0

2 1 1 2 3

2 2 1 9 6

3 1 1 5 2

3 2 1 2 9

4 1 1 3 5

4 2 1 5 2

Y = OLDsubjects.find(same(Subject),X);



PROCESS FLOW

STAGE 1
• Control Questions (Period 1 only)

STAGE 2

• See R
• Make Decision

STAGE 3
• Realise Payoff

STAGE 4
• See random chosen round and payment from that round (Period = 3 only)



STAGE 1

> Treatment > New Program (subjects) 
Participate = if(Period==1, 1,0);

> Treatment > New Checker The true condition that has 
to be met.



STAGE 2

Grid Box to show 
2x2 matrix

Standard Box for subject’s 
input

> Treatment > New Box > Grid Box 



STAGE 2



STAGE 3

Only update the Pay_Amount
if the period is exactly that of 
the pre-determined payment 
period.



STAGE 4



EXAMPLE IV

SEARCH 
LOTTERY



DESIGN

• Search for an “Object” by putting in some effort level {0, 5, 10, 15, …., 100}, 
which denotes the probability of finding a Prize (worth $50) 

• Greater effort corresponds to greater cost. 

• Run Survey after session

• Note: When a subject chooses an effort level , he gets to observe the 
corresponding cost first to which he has to confirm – he is able to revise his 
decision.

EFFORT 0 5 10 15 20 25 30 35 … … 100

COST 0 2 4 6 8 10 12 14 … … 40



SOME CONSIDERATIONS

The simple approach

// Effort is the input parameter

if(Effort == 0) {Cost = 0;}

elsif(Effort == 5) {Cost = 2;}

elsif(Effort == 10) {Cost = 4;}

…
elsif(Effort == 100) {Cost = 40;}

Can we do this more efficiently?
// Effort is the input parameter

Cost = Effort/5*2; 

However, this is because this example’s parameters are convenient – Lets think about this for 
the more general case. 



defines an array with indices from 1 to n
arrayvar[ n ]; 

defines an array with indices from x to y
array arrayvar[ x, y ]; 

defines an array with indices from x to y with distance d. 
array arrayvar[ x, y, d ]; 

GENERAL
(the Array Parameter)



USING THE ARRAY

Cost = 0;

array C[0,20]; // define the array

//Input variables into the array

C[0] = 0;

C[1] = 2;

C[2] = 4;

…

C[20] = 40;

//Now match the effort to the C array

Cost = C[Effort/5];

Suppose that we are too ”lazy” to input C[0],C[1],….,C[20]



Basic Loop
if ( condition ) { statements if condition is true;}
elsif ( condition) {statments if condition is true;}

While Loop
while( condition ) {statements if condition is true; }

Repeat Loop
repeat { statements } while ( condition ); 

Iterate Loops
iterator( varname, y ) //runs from 1 to y
iterator( varname, x, y ) //runs from x to y
iterator( varname, x, y, d ) 
//runs from x to y with steps of d. 

GENERAL
(generating loops)



Calculating: Y = 1+4+9+16+25 = 55 
Y = 0;
iterator(i,5).do { 
:Y = :Y + i * i;
} 

GENERAL
(generating loops)

i Y

1 1

2

3

4

5

i Y

1 1

2 5

3

4

5

i Y

1 1

2 5

3 14

4 30

5 25

i Y

5 25



INITIAL VALUES

// Globals

Prize = 50;

array C[0,20]; 

iterator(i,21).do {
C[i-1] = (i-1)*2;

}

//Subjects

Effort = 0;
Cost = 0;
Box = 0;
U = 0;
Find = 0;

STAGE 1
• Choose Effort (and see Cost)

STAGE 2
• See Search Outcome



STAGE 1

If Box == 0

If Box == 1



STAGE 1



STAGE 2

Write into the “session table” 



GENERAL
(session table)

Subject FinalProfit ShowUpFee ShowUpFeeI
nvested

MoneyAdded MoneyToP
ay

MoneyEarne
d

X

1 12.65 0 0 0 0 0 3

2 11 0 0 0 0 0 4

3 12 0 0 0 0 0 56

4 9 0 0 0 0 0 8

5 16 0 0 0 0 0 9

• One row per subject



SURVEYS

The survey design always starts with an  
“Address form”

> Questionnaire > New Address Form

Leave the details ”empty” if you want to skip 
the address form



> Questionnaire > New Question Form

SURVEYS

> Questionnaire > New Button



SURVEYS



SURVEYS



CLASS EXERCISE I I

JACKPOT 
MACHINE



TASK

• Do a simple jackpot machine consisting of two numbers (1,2,…,10).  

• Subject wins a prize if the two number are identical.

• Subject gets to ”spin” the jackpot as many times as he wants – subjected to 
budget constraint. 

• For each spin:

• Some money gets deducted (Tokens cost)

• New random numbers (1,2,…,10) are generated 

• Prize money is added if subject wins

• Subject can also decide to leave the jackpot and cash out



POSSIBLE SOLUTION



POSSIBLE SOLUTION



EXAMPLE V

DUTCH 
AUCTION 



DESIGN

• There is 1 object that is to be sold between 4 bidders

• The auction starts at the Price of $150.

• Every 3 seconds, the Price reduces by $10.

• A Bidder buys the object at the stated price by clicking the “Buy button”

• The auction ends for everyone in the group once someone in the group buys the 
object.



GENERAL
(the "later” function)

later( expression ) repeat { statements }
Note that the function does not have a build-in “while” 
condition.

Background > Treatment > New Program > Globals
P = 150; //Starting price $150
later(3) repeat 
{
P = P-10; //Every 3 seconds reduce price by $10
}

Prices can go below 0!



BACKGROUND (INITIAL VALUES)

P = 150;
R = 80;
later ( 3 ) repeat
{

P = P - 10;
if(P<R)
{

P = R;
}

}

E = 200;
V = random()*100;
U = 0;
Buy = 0;
Final_Price = 0;



AUCTION STAGE

if(sum(same(Group,Buy)==0) 
{ 

Buy = 1;
subjects.do{

if( same( Group ) ) 
{
LeaveStage = 1;
Final_Price = P;
} 

}
}



AUCTION STAGE



RESULT STAGE



CLASS EXERCISE 
I I I

ENGLISH 
AUCTION 



DESIGN

• There is 1 object that is to be sold between 4 bidders

• The auction starts at the Price of $0.

• Every 3 seconds, the Price reduces by $10.

• A Bidder in the auction can choose to leave the auction. 

• Each time someone leaves, all other bidder sees the total number of 
remaining bidders

• The auction ends for everyone in the group once there is only 1 bidder left in 
the auction – auction price determined.



POSSIBLE SOLUTION
(BACKGROUND STAGE)



POSSIBLE SOLUTION
(AUCTION STAGE)



POSSIBLE SOLUTION
(RESULT STAGE)



Day 1II
• Example VI: Continuous Double Auction

• Introduction to the Contract table
• Example VII: Random Stopping Public Goods Game

• Creating infinite length games
• Example VIII: Complex Move games

• Inserting Figures / Videos
• Designing complex sequential move formats

• Example IX: Chat Box
• Example X: 2-Dimesion Graphing

• Bars
• Lines

• Example XI: Graphing Pie Charts
• Exercise IV: Vernon Smith, Gerry Suchanek and Arlington Williams (1988) 

design with Graphed prices.

LESSON PLAN



EXAMPLE VI

CONTINUOUS 
DOUBLE AUCTION 

MARKET



DESIGN

• One-Period market involving N=4 traders

• Each trader endowed with $1000 and 10 assets 

• Trade facilitated through continuous double auction



Bid Price (i.e., How much you 
want to buy a stock at)

Ask Price (i.e., How much you 
want to sell a stock at)

Ask Prices of everyone
Bid Prices of Everyone

Market transaction prices

inventory



CONTRACT TABLE 
(CDA)

Period Seller Buyer Maker P Traded contractI
D

tradeID

1 3 -1 3 50 0 1 0

1 3 -1 3 45 0 2 0

1 4 -1 4 60 0 3 0

1 4 -1 4 35 0 4 0

Lowest Ask 
price below



CONTRACT TABLE 
(CDA)

Period Seller Buyer Maker P Traded contractI
D

tradeID

1 3 -1 3 50 0 1 0

1 3 -1 3 45 0 2 0

1 4 -2 4 60 0 3 0

1 4 1 4 35 1 4 1

Ask price from 
Seller 4 removed

Transaction Price 
Updated

Subjects’ inventory 
updated



TYPES OF CONTRACT BOXES

Contract creation box (input)

Contract List Box (Output) Standard Box



BACKGROUND STAGE
(init ia l values)

Globals

AuctionTime = 240;

numContracts = 0;

numTrades = 0;

Subjects 

Money = 1000;

Stock = 10;

Contracts

Seller = -1;

Buyer = -1;

P=0;

Traded = 0;

contractID = 0

tadeID =0



AUCTION STAGE
(init ia l values)



AUCTION STAGE
(init ia l values)



>treatment > New Box > Contract creation box 



>treatment > New Box > Contract List box

• If condition (Buyer==1)

• Sort (-P; -contractID; )

Removes seller’s other ask prices 
from “Market Ask Price”







EXAMPLE VI I

RANDOM 
STOPPING PUBLIC 

GOODS GAME



DESIGN

• Publics Good game session which stops at the period with probability ½.

Globals table

RepeatTreatment = 1 or 0;



EXAMPLE VI I I

COMPLEX MOVES



DESIGN

A chooses a number B Chooses a number

C sees A’s number and 
chooses a number 

Outcome = sum of all numbers 

• Suppose that numbers are between 0-3

• Assume B’s number is difficult to determine. 

• We thus want C to start once A has chosen his number

• We also want to show subjects the below graph – Stage 1. 

Stage 1I

Stage III

Stage IV



STAGE 1

>treatment > New Box > New Multimedia box

Path location of file

Manage distortions



STAGE 1



STAGE 1I

As per normal



STAGE 1II

count( Type == 1 & DecisionA > 0 ) == count( Type == 1 )



STAGE IV

find(Type==2, DecisionB) != -1 & find(Type==3,DecisionC )!=-1



EXAMPLE IX

CHAT BOX



DESIGN

• N=4 players are separated into 2 groups.

• They have two chat boxes

• Box 1 (Left): Sends message to everyone

• Box 2 (Right): Sends message only to same group members



CONSIDERATIONS

• We use the contracts table. 

• This is how the data looks like



CHAT STAGE

• We first program the Box 1

• >treatment >new box >New Chat
Input variable is ”t” Only ”t” associated 

with Box==1 is 
listed

<>S<Owner|1>, Box <Box|1>: <t|-1>



CHAT STAGE

• Now we program the Box 2

• >treatment >new box >New Chat



EXAMPLE X

2 DIMENSIONAL 
GRAPHING



DESIGN

• Players enter 3 numbers 

• Each number between 0-5

• The 3 numbers are graphed as bars

• The 3 numbers are graphed as line chart

• We are going to utilise the contracts table



BACKGROUND

Subjects enter 3 
numbers

Numbers will be 
sorted in the 

contracts table



STAGE I



STAGE II (BAR CHART)

>treatment >New Box >New Plot box



STAGE II (BAR CHART) 
DEFINE THE AXIS

>treatment >Graphics >New Axis



STAGE II (BAR CHART) 
CONNECT DATA TO PLOT

>treatment >Graphics >New Rect



STAGE II I (LINE) 
SETUP



STAGE II I (LINE) 
CONNECT DATA TO PLOT



EXAMPLE XI

GRAPHING PIE 
CHARTS



DESIGN

• There is a PIE of money (e.g., $100)

• Player chooses how much to offer to the Other (between 0 and 100)

• Player sees the offer in a 

• Pie Chart 

• % is plot



DESIGN



EXERCISE IV

SSW MARKETS



DESIGN

• N>2 Traders each endowned

• 6 assets 

• 1000 cash

• Trade takes place over 3 periods (inventory are carry forwarded at each period)

• Assets pay dividend 0, 20, 40 or 60 with equal probabilities 

• Realised only at the end of the period

• CDA market trade where plot are prices is presented to subjects 

• X-axis time 

• Y-axis transacted price


