CHAPTER 3
A CRASH COURSE IN ZTREE

Lawrence Choo, PhD

LESSON PLAN

Introduction to z-tree
* Ztree architecture
* How to setup your zleafs
Example I:The Public goods game
* Basic programming
* Generating Input / Output variables
Example lI: The Ultimatum Game
* Grouping mechanism (more programming)
* Sequential decision making
* Rich text format (rtf) coding
Class Exercise I: Second Price Auction

LESSON PLAN

Creating multiple leafs on a screen
Example llI: 2x2 Normal form game
* Laying out Grid matrix
* Random round payment
Example IV: Search Lottery
* Array programming and complex loops
* Programming a Survey
Class Exercise Il: Jackpot machine (A fair jackpot)
Example V: Dutch Auction
* the“later” function
Class Exercise lll: English Auction

LESSON PLAN

Example VI: Continuous Double Auction
* Introduction to the Contract table
Example ViI: Random Stopping Public Goods Game
* Creating infinite length games
Example Vill: Complex Move games
* Inserting Figures /Videos
* Designing complex sequential move formats
Example IX: Chat Box
Example X: 2-Dimesion Graphing
* Bars
* Lines
Example Xl: Graphing Pie Charts
Exercise IV: Vernon Smith, Gerry Suchanek and Arlington Williams (1988)
design with Graphed prices.

INSTALLING ZTREE
AND A BRIEF
INTRODUCTION

CLIENT-SERVER ARCHITECTURE

parameters
results
server program >
z-Tree subject's input
* - >

experimenter PC

client program

z-Leaf

subject PC

client program

z-Leaf

subject PC

INSTALLING “LEAFS”

Create multiple shortcuts for the zleaf

Go into the properties of each shortcut
leaf click on the properties dialog, click on
the shortcut tab and append the

.exe [name Yourleafname

Do this for every shortcut leafs giving a
unique name

Shortcut to zLeaf.exe Properties

General Shortcut I

! Shortcut to zLeaf.exe

2%

Target type: Application
Target location: gyee = "= = ~ 7 T~

Target: { IC:'\ztree\zLeaf.exe /name First J
~ -’

[7 RUmn In separate memory space I_ Run as different user

Start in: I Ci\ztree

Shortcut key: INone

Run: INormal window LI

Find Target... | Change Icon... |

oK Cancel | Apply

WHAT IS IN AN EXPERIMENT

* The whole experiment. This might contain multiple treatments
Session

* A specific treatment setup.
Treatment °* A treatment might contain multiple periods (i.e., rounds)

* A specific period.
Period * I his might contain multiple stages

* The lowest level, where subjects input / output variables are collected
Stage

HOW IS DATA STORED

Data is stored in numerical values in “pre-specified Tables”.

Name written Reset Freq. Description

global Every Every Input / Output variables that affect ALL
period Period subjects

subjects Every Every Input / Output variables that affect a specific
period Period subject

contract Every Every Period Input / Output variables that affect a specific subject
period within a period

summary Every Every Input / Output variables that affect a specific subject
period Treatment over a treatment

session Every Every Session Input / Output variables that affect a specific subject
treatment over a Session

ztree also allows for user created tables in addition to the above

EXAMPLE |

THE PUBIC
GOODS GAME

EXAMPLE: PUBLIC GOODS GAME

’UJZ:E—ZEZ—I—MXM

N
globals table
Period NumPeriods RepeatTreatment M E N
2 5 0 1.2 10 4
subjects table
Period Subject Group Profit TotalProfit Participate sumx u
2 4 I 12.65 18.65 I 15.50 12.65
2 5 2 I 15.45 I 10 I
2 6 2 12 20.10 I 10 12
2 7 2 9 10.00 I 10 9
2 8 2 16 22.12 I 10 16

SET BACKGROUND

* 4 Subjects

e All subjects in same group

General Parametﬂs-

* t=2 periods

Mumber of subjects

Cancel

Mumber of groups |

practice periods

paying periods

Exch. rate [Fr./ECU]
Lurmp sum payment [ECL]

@ globals

-5 subjects
& summary
5 contracts

{5 session
- logfile
=- {3 Active screen

Show up fee [Fr.]

Bankruptcy rules. .. |

Start time of the period

— Compatibility

[first boxes on top

=[] Waitingscreen
= Text
... Please wait until the experiment continues.

— Options
[without Autoscope

DEFINE INITIAL VALUES
(globals table)

> Treatment > New program

N = 4; //no. of players in a group
E = 10; // endowment

M=1.2; // multiplier # 1 Program

Tabl(I globals

Condition

Cancel

Program |//se "//" to inzert comments
M=4: /Mo of players in 1 group
E =10; //Endowment

M =1.2; //The multiplier |

=@ Background
- globals
-5 subjects

{5 summary
57 contracts

--£5 session
= Tioatiic
=-{[m] Active screen
.. Header
=[] Waitingscreen
=B Tedt
[Please wait until the experiment continues.

DEFINE INITIAL VALUES
(subjects table)

> Treatment > New program

X = 0; //define variable

FoPogem L -.—ag (S

4 .
Table\ i -] it
a Jsib|.ects _ 1_} WHEr a1 oK.

Condition

= Background Program
£ globals
-5 subjects

-5 summary
@ contracts

-5 session
£ logfile

El""'b globals.do { //Use "//" to insert comments ... }

=[] Waitingscreen
=B Text
... Please wait until the experiment continues.

CREATE NEW STAGES

* Select the most recent stage
> Treatment > New stage

* You can add as many stages as necessary

* Create “Decision stage” Stage =
N

*

/ — -
* Create “Results stage” Name { [Decionstend

~ , *
— Start —— Cancel |

& Wait for all
" Start if possible
" Startif...

[Untitled Treatment 2

S5 J Backqgrounc | e -

£ globals
-5 subjects
& summary
5 contracts

£ session
- logfile
=- {El Active screen

— Mumber of subjects in Stage

[At most one per group in stage

— Leave stage after timeout
@ |f no input " Yes

=[] Waitingscreen
El Text

... Please wait until the experiment continues.

" g

Timeout ET

.

/

.
" o on =

DECISION STAGE
(create new box)

A box contains

* Output variables that subjects see

* Input variables that subjects enter

Active screen > Treatment > New Box > Standard Box

Narne |Stanc|ard IV with Frame

— Distance to the margin [p/%] - — Adjustment to the remaining box -

10%

Width [p#%]

Height [p/%] li

I top
|1nz [~ left I~ right

™ bottom

Dizplay
condition

Buttons [FPosition Arrangement

* |nrows

" In columns

GENERAL
(box layout)

S L

Box can be position one after
another

Types of boxes:
Standard box
Grid box
Header box
Help box
History box
Container box

Calculator button box

-ﬁ Active scieen
= [l Contarer 12
- =B Standaid 1
- = [E Standaid 2
=) [l Contarmer 34
= B8 Standaid 3
=B Standard 4

= A Gid

0 labed

0 nput var IN[b |

0 nput var IN[d)
E0 zhows a OUT[a)

~ 0 second lsbel

~ 0 nput var IN[¢)
= 0K

DECISION STAGE
(Putting items in Box)

Creating a Output variable

Standard box > Treatment > New item

Variable

Layout

[Input

Text that subjects see

“Your Endowment”

The output variable “E”

How the output variable is
presented:

“I”

: no decimal places

(3 I”
.

: | decimal place

“.01” :2 decimal places

DECISION STAGE
(Putting items in Box)

* Creating a input variable

Standard box > Treatment > New item

Item
Label How much do pou want to contribute? - (] 4 I
Cancel |
Vaisble [mmmmmmimmimmmem The input variable “X”
Layout .01 -
_______________ How subjects input the data
SRt it v N .0l :2 decimal places, last
v 1 . e e .
: v digit is multiple of |
‘ Minimum |U
A . ! . . .
\ Mamam e JE |0: no decimal, variable is
* ~ o[= ShdT value [value of variable or default) mUIt|PIe Of IO
[~ Empty allowed
Defauit | 5:no decimal, variable is
. Event time | mUIt|PIe Of 5

Layout

Input variable

ltext: 7 = "seven"; B8 = "eight"; 9 = "nine”;

lradio: 1 = "86.8"; 24 = "102.87;

lradioline: 0="zero";5="five"; 6;

|||| |I|i| |||| W|||

L e O

lradiosequence: 7="geven";8="eight";9="nine";

" seven " eight nine

!slider: 0 ="A"; 100= "B"; 101;

Iscrollbar: 0="L";100= "R";101;

lcheckbox:1="check me";

Ibutton: 1 = "accept™; 0 = "reject";

Ilstring

I

20

Hello Vorld

DECISION STAGE

(Putting items in Box)

* Creating a button

Standard box > Treatment > New Button

Button I__J&
Name |[§]3 0K
[Norecord created or selected Cancel

| Clear entry after OK
Leave Stage
" Yes
" No

(¢ Normal [i.e. stage is not left after click if stage
is left after imeout and button is contained in
contract creation or selection box)

Color

(¢ Automatic
" Gray

" Red

Ewvent time

A button tells ztree to
collect the data and let the
subject leave the stage.

* Easy to forget

Without a button,
subjects get “stuck” on
the screen

DECISI

ON STAGE

(trial the Decision Stage)

Public Goods Game.ztt

run > start treatment

=& Background

% globals.do { N = 4; //no. of players in a group ... }
% subjects.do { X = 0; //define variable ... }

ED Waitingscreen
E Text
[0 Please wait until the experiment continues,
- Decision Stage =|= (100)
=-[m] Active screen
[Standard
EEI Your Endowment:: OUT(E)

Your Endowment:

How much do you want to contribute?

10.00

EEI How much do you want to contribute?: IN(X)

(How to "force subjects to leave a stage”?)

GENERAL

-

* run > client’s table

e Double click

* run > leave stage

Double click here

Clients' Table - = EoR =
4 clients state time
Robo1 *** Decision Stage *** -127
Robo2 *** Decision Stage *** -127
Robo3 *** Decision Stage *** -127
Robo4 *** Decision Stage *** -127

RESULTS STAGE
(collect the data from other subjects)

B | Program

Results Stage> Treatment > New program
Table |subjects LI 0 oK

Cancel

Condition

(subjects table)

* Find the contributions of all other players
o flc P SUMK = G L&)
within the same group B Tt S e

SUMX = sum (same (Group), X);

* Compute payoff
U=E - X + (SUMX)*M/N;

Alternative code
X) ;

SUMX = average (same (Group),

U =E - X + SUMX*M;

20;

M

M - g;

|5
8

20

5

12 | 20

—_r = — =

|5

20

5

12

GENERAL

(how programs run)

o|lo|o|X

O |O (O | X

O | O | O |X

- == - =

20

M = 20;
X =M - g;
y = sum(x);
g | M| x |y
20| 15 | I5
''''''' 220/ 8 |23
7 |0 0

g | M| x|y
5 20| I5 | 0
12 20| 8 |23
7 |20] 13 |36

GENERAL

(how programs run)

M = 20;

X =M - g;
g | M X y g | M X y
5 (20 15| 0 5 (20 15] 0
12 0 o i 712 | 20 0
7 0 7 0 0

New program

y = sum(x);
g | M| x |y g | M| x |y

20| 15 | 36 5 (20| I5 | 36

12 {20 | 8 12 {20 | 8 | 36
7 |20 I3 7 [20] 13 | O

g | M| x|y
5 (20| 15| 0
1212/ 8 |0
7 (20 13 |0
g | M| x |y
5 |20 | I5 | 36
12 |20 | 8 |36
7 20| 13 |36

Y = sum ([condition] , wvariable);

Y = average ([condition] , variable);
Y = minimum ([condition] , wvariable);
Y = maximum ([condition] , wvariable);
Y = median ([condition] , variable);
Y = find ([condition] , variable);

Y = count ([condition]);

(Create New Box and Output Variabels)

RESULTS STAGE

Active screen >Treatment > New Box > Standard Box
Standard box > Treatment > New item

* Label: Your Contribution | Variable: X
Standard box > Treatment > New item

* Label: Total contribution in this period | Variable: SUMX
Standard box > Treatment > New item

* Label: Your Payoffs | Variable: U

Standard box > Treatment > New Button

You contributed:
Total Contributions this period:

Your Payoffs this period:

3.00
12.00
10.60

OK

EXAMPLE Il

THE ULTIMATUM
GAME

DESIGN OBJECTIVES

Design Objectives

* 4 Subjects, 2 groups

* 2 period

* At each period, random allocation to Proposer or Responder

* Random grouping
e Pot=10

DEFINE INITIAL VALUES

> Treatment > New program (global table)

POT = 10; //Amount of money to be shared

> Treatment > New program (subjects table)
TYPE = 0; //l=Proposer, 2=Responder

OFFER = 0; //Proposer’s offer

RESPOND = 0; //Responder’s respond l=Accept 2=Reject

U = 0; //Payoffs

MATCHING
(BRUTE FORCE)

>Treatment > Parameter table

g

[& Untitled Treatment 4:2 o || &[5
51 53 54
1] 1]
1
1] 1]
2
Specific Parameter ﬁ
Subject 52 Period 1
Group |1 oK
M
ame I Cancel

Program TYPE=1] -

MATCHING
(a better approach to random grouping)

> Treatment > New program (subjects table)
G = 2; //Number of subjects in a group

r = random(); //Generate a random number between 0 and 1

Create a new program after random variable is created.
> Treatment > New program (subjects table)

RANK = count (r >= :1);

Group = roundup (RANK / G, 1);

> Treatment > New program (subjects table)

TYPE = count (same (Group) & r>= :r);

Subject

Subject

Subject

2

MATCHING
(a better approach to random grouping)

> Treatment > New program (subjects table)

G = 2; //Number of subjects in a group
> Treatment > New program (subjects table)
Sum No Tie = sum(Subject);

repeat {

subjects.do {

r = random() ;

}

subjects.do { RANK = count (r >= :r); } } while (Sum No Tie

= sum(RANK));

> Treatment > New program (subjects table)
Group = roundup (RANK / G, 1);

TYPE = count (same (Group) & r>= :r);

zlree - Ulimatum Gameztt

File Edit [Tmatmerlt' Run Tools View 2

Info... Ctrl+I |

g New Stage... Ctrl+Alt+S

e New Table... Ctrl+Alt+T
New Table Loader... bht.
[_]. Stz New Table Dumper... . .

E New Program... [Partner: Fixed Matching
New External Program...

UE}{ New Box b Stranger: Random Matching
: New On-Off Trigger...

EI .
@ NewButton.. Ctrl+Alt+B Absolute Stranger: Random Matching + New Stranger
New Checker... Ctrl+Alt+C
New Item... Ctrl+Alt+1
Graphics »

- Sta Slide Show »

BN
] Expand All Ctrl+E

El pa
) Parameter Table

Check Ctrl+K
Matching » Partner Ctrl+0
=y Utilities » As First Selected Period Ctrl+1

Language » Stranger Ctrl+2

E| i Active screen Absolute Stranger

E]m Standard Absolute Typed Stranger
ll:l The Proposer's offer was : OUT(RESPOND Tronsf
BT Your Payoff: OUT(U) ransterm..
: L3 0K
...[] Waitingscreen

Iy

0.

a,

k >= 10,

5);

0.5);

random ()) ;

if (k<5
abs (¢ -d
round (a,
roundup (
exp (

sgrt (b *
max (1n (

2

X

)

), log (

1,

Y

)

10

Iy

Iy

SEQUENTIAL PLAY

* Subjects learn about their types (Simultaneous)
STAGE |

* Proposer: Makes an offer
STAGE 2 ° Responder: -

* Proposer: -
sTAGE 3 ° Responder: See Proposer’s offer and chooses to accept or reject

* Payoffs are realised (Simultaneous)
STAGE 4

Background

|
| |
| S — |
| tables programs active screen waiting screen |
| |
| |
J
| |
A
Stage
~
v v
programs active screen waiting screen
/
Stage

programs

v

active screen

v

waiting screen

STAGE |

(Subjects learn about their types)

Solution I: Create two “standard box” and input items

* Label: You are the Proposer 1n this period
* Label: You are the Responder 1n this period

in each of the boxes. Use display condition to determine who sees what

Only subjects with
TYPE=I will see the
items in this box -~

5 3
Standard Box &J
Name |PROPOSER v with Frame oK.
Distance to the margin [pd%] Adjustment ta the remaining box
Width [p/%] | ,7 Cancel
Height [p/%] ,7 [~ top
| [left [right
,7 [bottom
Display | TvPE ==1|
condition
g omime== 7 -»
Buttons Position Arrangement
o el e * |nrows
o e e " In columns
{ - (¥

STAGE |
(Subjects learn about their types)

Solution |1l: create a generic box and in the label section of new item, include
<>{\rtf\fs20\gc You have been assigned to Group <Group|l>

and 1s the <TYPE| !text: 1="Proposer"; 2="Responder"> 1n
this period}

You have been assigned to Group 2 and is the Proposer in this period

OK

\tab

\par
\line
\bullet
\gl

\gr

\gc

\b

\b0

\i

\i0
\sub
\super
\strike
\ul
\ulo
\colortbl
\cfn
\fsn

tabulator

new paragraph

new line

bullet

aligned to left

aligned to right

centered

bold

not bold

italic

not italic

small and inferior numbers (index)
small and superior numbers (exponent)
crossed through

underline

do not underline

Color table. See examples.

Text color. n is the index of the color table which is defined by \colortbl.

Font size nin units of half a dot. The font size must be explicitly given, otherwise
it is larger (24) than usual in z-Leaf.

STAGE 2
(Proposer makes offer)

We only want the Proposer to enter stage 2

> Treatment > New program (subjects table)

Participate = 1f(TYPE==1, 1, 0);

5.8 Stage 2 =|= (30)N
% subjects.do { Participate = if(TYPE==1,1,0); }
E]@ Active screen
. 5-[E3 Standard
.0 Amount in the Pot: OUT(POT)
ED How much for Responder?: IN({ OFFER)

Amountin the Pot

How much for Responder?

10.00

STAGE 3
(Responder Decides)

We only want the Responder to enter stage 3
> Treatment > New program (subjects table)
Participate = 1f(TYPE==2, 1, 0);
OFFER = find(same (Group) & TYPE==

, OFFER) ;
- Stage3 =|= B0)N
% subjects.do { Participate = if(TYPE==2, 1, 0);
=-{m] Active screen e oot contal 1000
P e pot contains :
=-[=3 Standard
EEI The pot contains: OUT(POT) Proposer offered you

ED Proposer offered you: OUT(OFFER)
: ... Your decision: IN({ RESPOND)
-.]_] Waitingscreen

Your decision

o
o
o

STAGE 4
(Compute payoff)

> Treatment > New program (subjects table)
RESPOND = find(same (Group) & TYPE==2, RESPOND) ;
1f (RESPOND == 2) {U=0;}
elsif (RESPOND == 1)
{
1f (TYPE==2) {U=0OFFER; }
elsif (TYPE==1) {U=POT-OFFER; }

STAGE 4
(Compute payoff)

SR Stage 4 =|= (30)N

% subjects.do { RESPOND = find(same(Group) & TYPE==2, RESPOND); ... }

=-[2m) Active screen

. 5-F3 standard
D:I The Proposer's offer was : OUT(RESPOND)
EEI Your Payoff : OUT(U)

The Proposer's offer was

Your Payoff

Accepted
5.00

OK

CLASS EXERCISE |

SECOND PRICE
AUCTION

TASK

N=4 bidders

Valuations between [0, 100] uniform
Bidders are endowed with E = 200
2" price auction

In the event of a tie, random allocation amongst all claimants

Some useful scope operators
Y = maximum (same (Group), X);
Y = maximum (same (Group) & not (same (Subject)), X);

Y = sum(same (Group), X);

POTENTIAL SOLUTION

ml

- Submit Bid =|= (30)N

=-@» Background

-5 globals
{5 subjects

-5 summary
£ contracts

5P session

£ logfile

=¥ subjects.do{ ...}

..... BID = 0; // Subjects' bid

..... HB = 0; // Higest Bid in group

----- HBO = 0; //Higest bid of all other bidders

----- WIN = 0: // 1 if win the auction and 0 if not

----- SUMWIN = 0: //Total number of winners

----- V = randem()*100; //Subjects' valuation for object
----- E = 200; //Endowment

----- U = 0; //Total payoff

=-{ =] Active screen

=1-{_] Waitingscreen
-8 Text

.. Please wait until the experiment continues.

Your Endowment 200.00

Your Valuation for the Object 91.81

=-{[m] Active screen

E] Standard
CEI Your Endowment: QUT(E)
EEI Your Valuation for the Object: OUT(V)
. Your Bid: IN(BID)

D Waitingscreen

POTENTIAL SOLUTION

- Results =|= (30)N
E]% subjects.do{ ..}
- HB = maximum(same(Group), BID);

" HBO = maximum(same(Group) & not(same(Subject)), BID);

E]% subjects.do{ ...}
- WIN = if(BID == HB, 1,0);
E% subjects.do { ...}
L. SUMWIN = sum(same(Group), WIN);
Ej% subjects.do{ ...}
o f(SUMWIN>1) { if(WIN==1) {T = random(); }}
[_]% subjects.do { ...}

=¥ subjects.do{ ...}

o if(SUMWIN>1){if(WIN==1 & TRANK!=1){ WIN=0;}}
=% subjects.do{ ...}

P U = if(WIN==1, E-HBO+V, E);

=-[2m] Active screen

== Standard

Ry U Eid: OUT(EDD)|

- Higest Bid: OUT(HB)

- Total Number of Winners : QUT(SUMWIN)
-0 Did you win the auction (1=Yes, 0=No);: OUT(WIN)
- Your Payoff: OUT(U)

-2 0K

-[_] Waitingscreen

- if(SUMWIN>1){if(WIN ==1) {TRANK = count(same(Group) & WIN==1 & T<=:T);}}

Your Bid

Higest Bid

Total Number of Winners

Did you win the auction {1=Yes, 0=No);

Your Payoff

4.00

4.00

248.36

LESSON PLAN

Day 11

Creating multiple leafs on a screen
Example llI: 2x2 Normal form game
* Laying out Grid matrix
* Random round payment
Example IV: Search Lottery
* Array programming and complex loops
* Programming a Survey
Class Exercise Il: Jackpot machine (A fair jackpot)
Example V: Dutch Auction
* the “later” function
Class Exercise lll: English Auction

CREATING
MULTIPLE LEAFS
ON A SCREEN

MULTIPLE LEAFS

® N

‘Welcome to

zleaf 36.7

The client software of 2-Tree

Zurich

Toolbox for

Readymade

Economic

Experiments

Design: Urs Fischbacher

Programming: ~ Urs Fischbacher
Stefan Schmid

Copyright @ 1998-2016

University of Zurich
Department of Economics
Schoenberggasse 1
CH-8001 Zurich

http:/ fwvivi. ztree.uzh.ch/
z2tiee@econ.uzh.ch

®

‘Welcome to

zleaf 367

The client software of 2-Tree

Zurich

Toolbox for

Readymade

Economic

Experiments

Design: Urs Fischbacher

Programming: ~ Urs Fischbacher
Stefan Schmid

Copyright © 1938-2016

University of Zurich
Department of Economics
Schoenberggasse 1
CH-8001 Zurich

http: /v ztree. uzh.ch/
ztree@econ.uzh.ch

® N

‘Welcome to

zleaf 36.7

The client software of z-Tree

Zurich

Toolbox for

Readymade

Economic

Experiments

Design: Urs Fischbacher

Programming: ~ Urs Fischbacher
Stefan Schmid

Copyright © 1998-2016

University of Zurich
Department of Economics
Schoenberggasse 1
CH-8001 Zurich

http://www.ztree.uzh.ch/
ztree@econ.uzh.ch

®

‘Welcome to

zleaf 367

The client software of -Tree

Zurich

Toolbox for

Readymade

Economic

Experiments

Design: Urs Fischbacher

Programming: ~ Urs Fischbacher
Stefan Schmid

Copyright © 1998-2016

University of Zurich
Department of Economics
Schoenberggasse 1
CH-8001 Zurich

http://www. ztree.uzh.ch/
ztree@econ.uzh.ch

Open "notepad”

* Write command lines
* Save file with suffix .bat (e.g, P4.bat)

* Open ztree and execute bat file

| 4Players - Notepad R — - — e e evm———

- — —_— _— A
File Edit Format View Help

start \\psf'\Home'Desktop'ZTREE'zleaf /name Robol /size 960x500 /fontsize 10 /position 0,0
PING 1.1.1.1 -n 1 -w 2000 =NUL

start \\psf'Home'Desktop“ZTREE'zleaf /name Robo2 /size 960x500 /fontsize 10 /position 960,0
PING 1.1.1.1 -n 1 -w 2000 >NUL

start \\psf'Home'Desktop“ZTREE‘zleaf /name Robo3 /size 960x500 /fontsize 10 /position 0,500
PING 1.1.1.1 -n 1 -w 2000 =>NUL

start \\psf'\Home'Desktop'ZTREE'zleaf /name Robo4 /size 960x500 /fontsize 10 /position 960,500
PING 1.1.1.1 -n 1 -w 2000 =NUL

EXAMPLE Il

2X2 NORMAL
FORM GAME

DESIGN

Today Tomorrow
Today 200, 200 400, 0
Tomorrow 0, 400 R,R

* R can be either 300, 350, 400, ..., 800 with equal probability
* Subjects play 3 periods.
* Control question before starting the experiment

* Random period payment

** Note: Payoffs are symmetric, thus we don’t have to worry about types.

INITIAL VALUES
(globals table)

> Treatment > New Program (globals)
Outcomel = 0;

Outcome?2 = 200;

Outcome3 = 400;

Rand = random{() ;
IR = roundup (Rand*11, 1)*50 + 250;
——————————————————————————— T " Eam § Eam § Em w
Outcomed = R; !
Last Period = 3; é
:
0.13425 1.4767 2 350
0.85932 9.4523 10 750

0.002 0.022 I 300

INITIAL VALUES
(subjects table)

> Treatment > New Program (subjects)
X = 0; //Own decision
XO = 0; //Decision of other group player
U = 0; //Payoff for the period
ri%kﬁé}iaé;;_f ___
I
i rr = random() ;
I Pay Period = roundup(rr*Last Period, 1)+0;
Pay Amount = 0;
}
elsif (Period>1)
{
Pay Period = OLDsubjects.find(same (Subject), Pay Period);

Pay Amount = OLDsubjects.find(same (Subject), Pay Amount);

GENERAL
(accessing data from previous period)

* The“lifespan” of the subjects table is only | period — reset at start of each period

* The command “OLDsubjects” accesses the subjects table in the immediate previous
period — older periods are not accessible.

Y = OLDsubjects.find (same (Subject),X);

Period Subject Group X Y
| | | 3 0
| 2 | 6 0

\‘
2 | | 2 < 3
\‘
2 2 | 9 6
\
‘\
3 | | 5 | « 2
3 2 | 2 9 9
\‘
4 | | 3 “ 5
4 2 | 5 2

PROCESS FLOW

* Control Questions (Period | only)
STAGE |

e See R
sTAGE 2 °* Make Decision

* Realise Payoff
STAGE 3

* See random chosen round and payment from that round (Period = 3 only)
STAGE 4

STAGE |

> Treatment > New Program (subjects)

Participate =

1f (Period==1,

> Treatment > New Checker

=&Y Stagel =|= (30)
E]@ Active screen
. 5-E3 Standard
[Ris: OUT(

R)

" e,
-—
-—
-—
-_
- -
e
",
-—

r

Dialog

Flease enter the correct B

L

1,0)

’

The true condition that has
to be met.

"ha"-Button |DK

7
/
/
/
- /‘
Checker K4 ﬁ
Condition [g== » oK I
_Message |Please enter the correct R
[This message
appears if the
condition is
not satisfied.)
_ -
- - ° - ’
- " = -
"ves'-Button |

[f there iz only a "'yes"-button, then the message appears
and after pressing this button the input is accepted.

It there I only a “no’-button, then the message appears
and after pressing this button the input is rejected.

If there iz a "yes" AND a "no'-button, then the message
should contain a question. Pressing the YES button
accepts the input pressing NO rejects it.

STAGE 2

Grid Box to show
2X2 matrix

Standard Box for subject’s
input

> Treatment > New Box > Grid Box

Grid Box

Name ,Gndi ¥ with Frame

Distance to the margin [p/%]

Adjustment to the remaining box

ihg

Num. Rows |3 Num. Columns |3

* Input row-by-row (tab through rows)
" Input column-by-column (tab through columns]

IV First row contains labels Height [] [100

[V First column contains labels Width [%] 100

v Separate labels by lines
v Separate rows by lines

Buttons Position Sequence of buttons
: : : @ Inrows
. - 'S .
" In colum

C |
Width [p/%] 0% ol ki
. " op
Height [p/%] I I [~ left I right
[bottom
50%
Display
condition

STAGE 2

= . Stage 2 =|= (30)N
El @ Active screen
: E] E Grld_>

D <>{\tf\fs20\qc <Outcome2 | 1>, <Outcome2 | 1>}
.m <>{\rtf\fs20\qc <Outcome3 | 1>, <Outcomel | 1>}
- Tom.
-0 <=>{\rtf\fs20\qc <Outcomel |1>, <Outcome3 | 1>}
- Lm0 <>{\rtf\fs20\gc <Outcomed | 1>, <Outcomed |1>}
E] - =3 Standard = —-—-=—+=r=m m mrmim i m ->
-0 You are the Row Player
-0 Please enter your choice: IN(X)
-{_] Waitingscreen

e Tom.
Today 200, 200 400, 0
Tom. 0. 400 700, 700

You are the Row Player

Flease enter your choice

STAGE 3

=& Stage 3 =|= 30)N
E] % subjects.do { ... }
. e XO = find(same(Group) & not({same(Subject)), X);

% subjects.do{ .. }

_____ if(X==1 & X0==1) {U=0utcome2:} e

..... elsif(X==1 & X0==2) {U=0utcome3;} ‘/'/‘
- elsif(X==2 & X0==1) {U—Outcomel-}"
.. e|5|f(X: =2 & X0= :2:] {U Outcome4 }

E] @ Active screen e

- -3 Standard /'/
EEI Your Payoffs farthls round: QUT(U)
El = oK /'

E] % suﬁjects do{ ..}
----- if(Period == Pay_Period)
_____ [
----- Pay_Amount = U;
o)

Only update the Pay Amount
if the period is exactly that of
the pre-determined payment
period.

STAGE 4

- Staged =|= (30)N
E% subjects.do{ ..}

: Participate = if(Period==Last_Pericd, 1,0);
=-[[m] Active screen

E] Standard

[Selected payment round: OUT(Pay_Period)
M Payment Amount: OUT(Pay_Amount)

.. Period: OUT(Period)

/’ - Your Payoff: OUT(U)
2" L[] Waitingscreen
'
0/.
4
0,.
‘/
‘/
‘/
Period Your Payoff
1 0
2 0
3 200

Selected payment round

FPayment Amount

EXAMPLE IV

SEARCH
LOTTERY

DESIGN

» Search for an “Object” by putting in some effort level {0, 5, 10, 15,, 100},
which denotes the probability of finding a Prize (worth $50)

* Greater effort corresponds to greater cost.
* Run Survey after session

* Note: When a subject chooses an effort level , he gets to observe the
corresponding cost first to which he has to confirm — he is able to revise his
decision.

EFFORT

COST 0 2 4 6 8 |0 12 14 40

SOME CONSIDERATIONS

The simple approach

// Effort is the input parameter

1if(Effort == 0) {Cost = 0;}

elsif (Effort == 5) {Cost = 2;}
elsif (Effort == 10) {Cost = 4;}
elsif (Effort == 100) {Cost = 40;}

Can we do this more efficiently?
// Effort is the input parameter
Cost = Effort/5*2;

However, this is because this example’s parameters are convenient — Lets think about this for
the more general case.

defines an array with indices from 1 to n
arrayvar|[n 1];

defines an array with indices from x to y
array arrayvar| x, vy 1;

defines an array with indices from x to y with distance d.
array arrayvar| x, y, d 1;

USING THE ARRAY

Cost = 0;

array C[0,20]; // define the array

//Input variables into the array

C[O0] = 0O;

Cll] = 2;
Cl[2] = 4;
C[20] = 40;

//Now match the effort to the C array
Cost = C[Effort/5];

Suppose that we are too “lazy” to input C[0],C[1],....,C[20]

Basic Loop

1f (condition) { statements if condition 1is true;}
elsif (condition) {statments if condition is true;}
While Loop

while (condition) {statements i1f condition 1is true; }

Repeat Loop
repeat { statements } while (condition);

Iterate Loops

iterator(varname, y) //runs from 1 to y
iterator (varname, x, y) //runs from x to y
iterator (varname, x, y, d)

//runs from x to y with steps of d.

GENERAL
(generating loops)

Calculating: Y = 1+4+9+16+25 = 55

Y = 0;

iterator (i,5) .do {

(Y = Y + 1 * 1i;

}
i Y | Y i Y
| | I I | |
2 2 5 2 S_ ..
3 S —» 3 SRR EEEE > 3 |4
4 4 4 30
5 5 5 25

25

INITIAL VALUES

// Globals //Subjects
Prize = 50; Effort = 0;
Cost = 0;
array C[0,20]; Box = 0;
U = 0;
iterator (i,21) .do { Find = 0O;
Cli-1] = (i-1)*2;

}

e Choose Effort (and see Cost)
STAGE |

* See Search Outcome
STAGE 2

STAGE |

If Bpx ==
' !

E] E, Search ‘-|- (100)N

: E = Actwe SCreen

E]-anut _,.»"'/
. 5-E3 standard i
EEI Please Enteryour‘Effort Level: : IN(Effort)
EI 30 Nexh- -~

E]% subjects.do{ .. }

- Cost = C[Effort/5];

b Box=1:

=- |8l Confirm
ﬁg]- Standard

: EEI Your selected Effort Level:: QUT(Effort)

i~ Your Search Cost: OUT(Cost) .

! I:l Confirm _ _.—.-= 77

: EI = Revise« =~~~

; E] % subjects.do{ .. }

I - Box = 0:

| .

I

D Waltlngscreen

If Box ==

Button

(S

MName

Ewvent time

=

[Mo record created or selected

r Elear entry, after DK
\
ALeave Stage S
" Yes .
* No \
" Mormal [i.e. stage is not left Sfter click if stage

o iz left after timeout and button is contained in
N g gontract creation er “Election box)

— Color
" Automatic
* Gray
" Red

0K I
Cancel |

. -
. -
. -
. -
. -

-
-
. -
-
—_"
. -
-
-

STAGE |

=& Search =|= (100)N L
: El@ Active screen _-~ .
5Bl Input
. =-[E standard

EEI Please Enter your Effort Level: : IN(Ef

== Next

El% subjects.do{ ... }
- Cost = C[Effort/5];

Please Enter your Effort Level:

Next

- Box=1:

= |8l Confirm
=B Standard. _
EEI Your selézt'ed{ffgrt Level: QUT(Effo
EEI Your Search Cost: OUT Cost)
l:l Confirm Trsl
EH:I Revise
E% subjects.do{ ..}

" A

- Box = 0;
- Effort = 0;
..... [_] Waitingscreen

Your selected Effort Level:

Your Search Cost

30

12.00

STAGE 2

= E, Result =|= (30)
% subjects.do{ ... }
- rr = random()*100:
- if(Effort>= rr) {Find=1:}

- if(Find==0)

Did you find the prize? (1=Yes, 0 =No) 0

Your Payoff -20.00

- eksif(Find==1) 5

U= -Coste Prizgy” s |

..... }) /s’

: /
Sessse /

E] {3 Active screep
= Standafd _.--1 Write into the “session table”

\

.. Did you find the prize? (1=Yes, 0 =No): OUT(Find}- - -
.. Your Payoff: OUT(U) T
== Survey -

-, ET

-

GENERAL

(session table)

One row per subject

Subject FinalProfit | ShowUpFee | ShowUpFeel | MoneyAdded | MoneyToP | MoneyEarne X
nvested ay d

I 12.65 0 0 0 0 0 3

2 I 0 0 0 0 0 4

3 12 0 0 0 0 0 56

4 9 0 0 0 0 0 8

5 6 0 0 0 0 0 9

The survey design always starts with an
— -1 "Address form”
-------------- S . . o N e :
. Demograhlcs: Questlonnalre ew ress rorm
|
----- .0 What is your age: IN(Age) _ i —
v -
----- .3 Explain your behaviour: IN(Explain) = —
| Next Adress Entry I | 0K I
First N
E-- Bye: irst Name I Cancel |
Last Mame I
----- .0 Thank you and bye iess |
Postal code I
City |
Telephone I
EMai |
Do you want to |
participate in further
experiments?
Leave the details "empty” if you want to skip ves | o |
Continue [button label) Inext
the address form b |
Help text -

> Questionnaire > New Question Form

.
-
-"
l’
.-

..... n What is your age: IN(Age)
..... Ij Explain your behaviour: IN(Explain)

> Questionnaire > New Button

Question S ucstion ()
Label wplain vour behaviour - Label What is your age -
Wariable IEprain Wariable IAQB
Type Type
W wide " Number ¢ Radiobuttons " Checkbox I~ wide & Number { Radiobuttons " Checkbox
' Input @ Text ¢ Radioline " Slider W Input " Tewt ¢ Radioline " Slider
[~ Empty allowed " Buttons ¢ Radiolinelabel ¢ Scrollbar [~ Empty allowed " Buttons { Radiolinelabel ¢ Scrollbar
Minirmurn IU
Maximum {100
Resolutior |-|
Mum. rows |2U
Cancel | | DK I Cancel | Ok I

What is your age :I

Explain your behaviour

CLASS EXERCISE Il

JACKPOT
MACHINE

TASK

Do a simple jackpot machine consisting of two numbers (1,2,...,10).
Subject wins a prize if the two number are identical.

Subject gets to "spin” the jackpot as many times as he wants — subjected to
budget constraint.

For each spin:

Some money gets deducted (Tokens cost)

* New random numbers (1,2,...,10) are generated
* Prize money is added if subject wins

Subject can also decide to leave the jackpot and cash out

POSSIBLE SOLUTION

= ’ Background

..... -5 globals
..... @ subjects

..... £ summary
..... @ contracts

..... £ session
..... w— logfile

EI % globals.do{ ... }
I Prize = 10;

P Cost = 0.5;
El % subjects.do{ ... }
- Money = 100;
..... Box=0;
..... Won=0;
..... TimesWon = 0;
: - array R[1,2];
E{j Active screen

EID Waitingscreen
=B Tedt

... Please wait until the experiment continues.

=& Spin=|= (-1)

=-{m) Active screen

=B Play

ED Your Money: OUT(Money)

ED No of times you won: OUT(TimesWon)

== Spin
----- & Money>=Cost
E% subjects.do{ ...}
..... Box=1;
..... Money = Money - Cost;
----- iterator(i,2).do {
..... R[i] = roundup(random()*10,1);

..... if(R[1]==R[2])

..... Won=1;
..... TimesWon = TimesWon+1;
..... Money = Money + Prize;
..... }
=-(Z Outcome
EI:I 1st Number: QUT(R[1])
ED 2nd Number: QUT(R[2])
ED Did you win (1=Yes, 2=No): OUT(Won)
l:l Leave
B- {33 Back
= “5%
- Box =
o Won = 0
-{_] Waitingscreen

POSSIBLE SOLUTION

Your Money 100.00

Mo oftimes you won 0

N [N

1st Number:
2nd Number:

Did you win (1=Yes, 2=No)

EXAMPLE V

DUTCH
AUCTION

DESIGN

There is | object that is to be sold between 4 bidders

The auction starts at the Price of $150.

Every 3 seconds, the Price reduces by $10.

A Bidder buys the object at the stated price by clicking the “Buy button”

The auction ends for everyone in the group once someone in the group buys the
object.

later (expression) repeat { statements }
Note that the function does not have a build-in
condition.

Background > Treatment > New Program > Globals

'P = 150; //Starting price $150

'later (3) repeat
I
A

“while”

3 Prices can go below 0!

BACKGROUND (INITIAL VALUES)

P = 150;
R = 80;
later (3) repeat
=& Background /," P =P - 10 ;
| @ globals /,/ .
@ subjects /./' 1f (P<R)
£ summary e {
@ contracts /"‘ P = R:
@ session //' ’
@ logfile /'/ }
¥ globals.do{ P =150; ...} }
% subjects.do { E = 200; ... }
E]IE Active screen A
.57 Header N
ED Waitingscreen \'\.
£ Text
- Please wait until the experiment continues.
‘\
A E = 200;
.V = random () *100;
N
*U = 0;
Buy = 0;

Final Price = 0;

AUCTION STAGE

Leave stage after timeout

* |f ho input " Yes " No Leave Stage
: * “Yes
; " No
! _-7 | €7 Nomal [i.e. stage is not left after click if stage
! 2 is left after timeout and button is contained in
! 7 contract creation or selection box)
1 °
I s -
| L7
I a
: v -7
= Auction =|= (60) L7
- = =] Active screen L
=-[E4 Standard P if (sum(same (Group, Buy)==0)
-0 Price: QUT{P) {
M Yourya]i.lation: QUT(V) B _ 1.
== Buy’ uy -
: % subiects.do{ if(sum(same(Gr Su-b] ects.do
-.J_] Waitingscreen "~._ if(same(Group))
.\.\. {
s LeaveStage = 1;
T Final Price = P;
. }

AUCTION STAGE

E]El Auction =|= (60)
{8 Active screen
. 5-[E3 standard
.0 Price: OUT(P)
D] Your Valuation: QUT(V)
.= Buy
: % subjects.do { if(sum(same(Group), Buy) ==0) ..}
D Waitingscreen

Price 120.00

Your Valuation 85.88

RESULT STAGE

Auction Price 110.00
Did you win? {1=Yes, 0=No) 1
Your Valuation 85.88
=] E' Outcome =|= (30) Your Money 16588
- Ee
- |f(Bu)
..... !
- U =E-Final_ Price + V:
.....]
- elsif(Buy==0)
...... !
...... U=E
...... 1

E] Ij Active screen
- -3 Standard
D] Auction Price: QUT(Final_Price)
.0 Did you win? (1=VYes, 0=No): OUT(Buy)
EEI Your Valuation: QUT(V)
. Your Meney: OUT(U)
: .= Next Round
----- D Waitingscreen

CLASS EXERCISE
1

ENGLISH
AUCTION

DESIGN

There is | object that is to be sold between 4 bidders
The auction starts at the Price of $0.

Every 3 seconds, the Price reduces by $10.

A Bidder in the auction can choose to leave the auction.

. Each time someone leaves, all other bidder sees the total number of
remaining bidders

The auction ends for everyone in the group once there is only | bidder left in
the auction — auction price determined.

POSSIBLE SOLUTION
(BACKGROUND STAGE)

= Q Background
{5 globals
»»»»» @ subjects

----- @ summary
----- @ contracts

E]%globalsdo{ .y

- P=0;
~~~~~ later (3) repeat
-
- P =P+10;
- - )
E] % subjects.do{ ..
P - V= randomO*lOO
. E=200;
" Stay = 1
- U=0:
~~~~~ Left = count(same(Group));
P " Final_Price = 0;
E] [EI Active screen
5 .1 Header

El[j Waitingscreen

POSSIBLE SOLUTION
(AUCTION STAGE)

=-=4 Auction Stage =[= (30)
{8 Active screen
. 5-[=3 Standard
.0 Price: OUT(P)
ED Your Valuation: QUT(V)
ED Mo. of Bidders Left: OUT(Left)
E]D Leave Auction
El% subjects.do{ ...} Your Valuation: 28.27
----- if(count(same(Group) & Stay==1) > 1) No. of Bidders Left 4

Price 10.00

..... Stay = 0;
..... subjects.do{
..... if(same(Group))

----- subjects.do{

..... if(count(same(Group) & Stay==1) ==1)
..... {

..... subjects.do{

..... if(same(Group))

____ {
.... LeaveStage = 1;

..... Final_Price = P:

POSSIBLE SOLUTION
(RESULT STAGE)

35 Results =|= (-1)N Final Price 70.00
E]% subjects.do{ ..} Did you win? {1=yes, 2=No) 0
: ---- if(Stay==1) Your Money 200.00
= !
- U = E - Final_Price + V:
.....)
----- elsif(Stay ==0)
- {
fooue U= E,'
- }

=-[[@) Active screen

=B Standard

5 DII Final Price: QUT(Final_Price)
D] Did you win? (1=yes, 2=No): OUT(Stay)
D] Your Money: OUT(U)

: .[=3 Next Period

D Waitingscreen

LESSON PLAN

Day IlII
 ExampleVI: Continuous Double Auction
* Introduction to the Contract table
 Example Vll: Random Stopping Public Goods Game
* Creating infinite length games
 Example VIll: Complex Move games
* Inserting Figures /Videos
* Designing complex sequential move formats
 Example IX: Chat Box
* Example X:2-Dimesion Graphing
* Bars
* Lines
 Example Xl: Graphing Pie Charts
* Exercise IV: Vernon Smith, Gerry Suchanek and Arlington Williams (1988)
design with Graphed prices.

EXAMPLE VI

CONTINUOUS
DOUBLE AUCTION
MARKET

DESIGN

One-Period market involving N=4 traders
Each trader endowed with $1000 and 10 assets
Trade facilitated through continuous double auction

Period .
1 of 1 ’

Remaining time [sec]: 112 |

Your Money: 1250.00

Your Stock 8

Market Ask Price Market Price Market Bid Price
100.00 50.00 50.00
100.00 80.00
100.00
100.00

Your Ask 100 Your Bid 50

o] [| =

Ask Prices of everyone

A : Bid Prices of Everyone
. Invento ry
\ /
* ./ .
\‘ ./ .I
Pericd A 7 4
N 1 of 1 ’ Remaining time [sec): 112
\ /' g
v ¥ /
N Your Money: 1250.00 /
\ .
. /
N Your Stock 8)
\ N
\Market Ask Price Market Price Market Bid Price
" 100.00 50.00 50.00
B 100.00 80.00
o 100.00 >
100,00
. '
. 7
. e
7
Your Ask 100 12 Your Bid | 50
/7
< ‘ \
K4 . . \
v Market transaction priges -‘
/ .
/. \-
’ \
/. \
/ \
/ \
) ASK BID

Ask Price (i.e., How much you
want to sell a stock at)

Bid Price (i.e., How much you
want to buy a stock at)

Period Buyer Traded contractl tradelD
D
I 3 -1 3 50 0 I 0

Lowest Ask
price below

\

-1 3 45 0 2
-1 4 60 0 3
-1 4 35 0 4
FPericd
r 1 of 1 | | Remaining time [sec): 1320
Your Money: 1000.00
Your Stock 10
Market Ask Price Market Price Market Bid Price

60.00

50.00

45.00

_.-¥
Your Ask _ Your Bid

i I I

Period Buyer Traded contractl tradelD
D
I 3 -1 3 50 0 I 0

Transaction Price
Updated

Subjects’ inventory
updated

Ask price from
Seller 4 removed

-1 3 45 2
-2 4 60 3
| 4 35 4
Period
r 1 of 1 | | Remaining time [sec]: 178
Your Money: 965.00
Your Stock 11
Market Ask Price Market Price Market Bid Price
.................. se00 . _._.(l._., 3500
45.00
. - '
. ”
. ”
. - :
. ”
. ”
YourAsk Your Bid
L -
AsK /= [—

TYPES OF CONTRACT BOXES

Contract List Box (Output)

Standard Box

1

1

T 1
I I
Period ! | I :
1 1 of 1 I ‘ ’] Remaining time [seg: 112
\ | I I
1 | I 1
“ Your Money:i 1250.00 ' I.
- . - '
U Your Stocd 8 !
1 1 I
Market Ask Price Mark_bt Price Market éid Price
'100.00 sb.00 50l 00
! 1ovo.oo ed.00
! 100.00 T
1]
v 100.00 v
>
\
\
Your Ask 100 Your Bid 50
\
. a
\ .
o V4
\ -
o /
\. /
\. /
\ I.
\ /
\ /
| (e e

Contract creation box (input)

BACKGROUND STAGE
(initial values)

= Q Background Globals

-5 globals
44444 £ subjects AuctionTime =
----- @ summary
“““ £ contracts numContracts =
----- {5 session numTrades = 0;
£ logfile
El % globals.do{ .. } Subjects

o AuctionTime = 240;
----- numContracts = 0:

Money = 1000;

------ numTrades_O Stock = 10;
El % subjects.do{ ..

- Money = mm Contracts
T Stock = 10; Seller = -1;
EI“% contracts.do{ ...}

L b Seller = -1; Buyer = -1;

- Buyer = -1;

é _____ P=0: P=0;

----- Traded = 0; Traded = 0;

----- contractlD = 0;

- tradelD = 0: contractID = O
E] Active screen
= QE Header tadeID =0
= { Waitingscreen
E]"- =3 Text

... Please wait until the experiment continues.

240;

0;

AUCTION STAGE
(initial values)

ETE| Market =|= (AuctionTime)A
5@ Active screen

E] Inventory

EEI Your Money:: OUT(Money)

: .. Your Stock: OUT(Stock)

,. make: Ask: contracts

-»{fﬂj To Buy: contracts(Buyer == -1), sorted by: -P; -contractlD
tﬁﬁ Contract list: contracts((Buyer > 0) & (Seller>0)), sorted by: tradelD
ﬂ_’ﬂj To Buy: contracts(Seller == -1), sorted by: P; -contractlD
-2 make: bid: contracts

-{_] Waitingscreen

’7 Period

Remasining time [sec]: 112

Your Money: 1250.00

Your Stock]
Market Ask Price Market Price Market Bid Price
100.00 50.00 50.00
100.00 60.00
100.00
100.00

Your Ask m Your Bid III

AUCTION STAGE
(initial values)

ETE, Market =|= (AuctionTime)A

B- @ Active screen

- Inventary

EEI Your quey OUT(Money)

. .01 Your Stock\OUT(Stock)
. +-[&2] make: Ask: contracfs
l i To Buy: contracts(Buyer\- -1), sorted by: -P; -contractlD

m Contract list: contracts((Buye'r > 0) & (Seller=0)), sorted by: tradelD
- +-fii To Buy: contracts(Seller == -1), so:ted by: P; -contractlD
-2 make: bid: contracts N,
-{_] Waitingscreen e

Remasining time [sec]: 112

\A Your Money: 1250.00

Your Stock]

Market Ask Price Market Price Market Bid Price
100.00 50.00 50.00
100.00 60.00
100.00
100.00

Your Ask m Your Bid III

-

E]

Market =|= (AuctionTime)A Pt ‘

.
-

[[m] Active screen e
B3 Inventory .-+~ -
E] make: Ask: contracts

i EEI Your Ask: IN(P)
-3 ASK
. Stock>0
E]% contracts.do{ ..}
----- Seller = :Subject;

- Buyer = -1;
- Maker = :Subject;
----- Traded = 0;

’» Period

‘ ’ Remaining time [sec]: 112

Your Money:

Your Stock

1250.00

8

roere [0

Market Ask Price

Market Price

Market Bid Price

100.00

50.00

100.00
100.00
100.00

50.00
€0.00

| ASK I

e |

>treatment > New Box > Contract creation box

----- \numContracts = \numContracts + 1;

o contractlD = \numContracts;

[f_m To Buy: contracts(Buyer == -1), sorted by: -P; -contractlD
- Contract list: contracts((Buyer > 0) & (Seller>0)), sorted by: tradelD
i To Buy: contracts(Seller == -1), sorted by: P; -contractID

~- make: bid: contracts
[[] Waitingscreen

E]ﬂf_f] To Buy: contracts(Buyer == -1), sorted by: -P; -contractlD

”PEI‘iDd

Remasining time [sec]: 112

Your Money: 1250.00

Your Stock 8

Market Ask Price Market Price Market Bid Price

'S, 100.00 50.00 50.00
S, - 100.00 €0.00

9 100.00

"Nl 100.00

s 1| (I [

| BID I

>treatment > New Box > Contract List box
If condition (Buyer==1)

Sort (-P; -contractID;)

.0 Market Ask Price: OUT(P) ~'~._
= =3 BUY N
W Seller != :Subject [N
& Money>=P T
EI% contracts.de { ... }
. Buyer = :Subject;
------ :Money = :Money - P;
----- Stock = :Stock + 1;
----- Traded = 1;
------ ‘numTrades = \numTrades+1;
...... tradelD = \numTrades;
_____ subjects.do{
..... if(:Seller == Subject)
..... [
...... Money = Money + P; o
...... Stock = Stock - 1;
----- } .
...... !
! contracts.dof{ I
I - if (Buyer == :Buyer & Seller == -1) I
: = ! I
R Seller = -2 .
| 5 :
. - } I
| - if (Seller == :Seller & Buyer==-1) I
. { !
T } Buyer = -2; I

Removes seller’s other ask prices
from “Market Ask Price”

Em Contract list: contracts((Buyer > 0) & (Seller=0)), sorted by: tradelD

~
.
~

.
~
.

. D Market Price: OUT(P)
E]Eﬂ To Buy: contracts(Seller == -1), sorted by: P; -contractlD
... Market Bid Price: OUT(P)
= =3 Sell
. Buyer = :Subject
. Stock >0
E]% contracts.do{ ... }
..... Seller = :Subject;
..... :Money = :Money + P;
----- :Stock = :Stock - 1;
----- Traded = 1;
----- \numTrades = \numTrades+1;
----- tradelD = \numTrades;
..... subjects.dof
- if(:Buyer == Subject)
-
- Money = Money - P;
..... Stock = Stock + 1;

----- contracts.dof

----- if (Buyer == :Buyer & Seller == -1)

..... {
----- Seller = -2:

-

I [Remasining time [sec]: 112

1 of 1
~
~ -
N Your Money: 1250.00
~
N, ‘S Your Stock 8
~ 'S
- ~ = .
~. Market Ask Pricé ~ Market Price Market Bid Price
Sl 100.00 S., 5000 50.00
~. - 100.00 60.00
‘S 100.00
~. 100.00
~ -
I~
~ -
~ -
~)
Your Ask “ S Your Bid El
'~
~
~
A

Pericd
r 1 of 1 I l Remasining time [sec]: 112

Your Money: 1250.00

Your Stock 8
Market Ask Price Market Price Market Bid Price
100.00 50.00 50.00
100.00 60.00
- P) A} (P A I L+ X1 L1 R + =
=[] make: bid: contracts- . - . - - oo m i m = -p=== 100.00

. Your Bid: IN(P)
[Yo e [e [5]
. Money >=P
El% contracts.do{ ... }
..... Seller= -1;

- Buyer=:Subject;] e | =]

o Maker = :Subject;

----- Traded = 0;

----- ‘numContracts = \numContracts + 1;
b contractlD = \numContracts;

EXAMPLE VI

RANDOM
STOPPING PUBLIC
GOODS GAME

DESIGN

SR

Publics Good game session which stops at the period with probability 2.

glebals.do{ ... }

N = 4; //no. of players in a group

E=10: // endowment
M =1.2; // multiplier
rr = random();
if(rr<=0.5)

{

RepeatTreatment =0;
h

elsif(rr=0.5)

{
RepeatTreatment = 1;

Globals table

RepeatTreatment

1 or 0O;

EXAMPLE VIII

COMPLEX MOVES

DESIGN

Suppose that numbers are between 0-3

Assume B’s number is difficult to determine.

We thus want C to start once A has chosen his number

We also want to show subjects the below graph — Stage 1.

Stage ||

Stage

B Chooses a number

Stage IV

STAGE |

>treatment > New Box > New Multimedia box

@ Example 8.zt

=-@» Background

57 globals

57 subjects

£ summary

-7 contracts

£ session

57 logfile

[_]% subjects.do{ ..}
Type = Subject;

DecisionA = -1;

DecisionB = -1;

o DecisionC = -1;
=-{{m] Active screen

=1-{_] Waitingscreen

=B Tedt

... Please wait until the experime

B Stagel =|= (30)
E@ Active screen
; m Figure

=-E3 Standard
*..[J Waitingscreen
EH". Stage 2 =|= (30)N
-y Stage 3 (count(Type == 1 & DecisionA >

% subjects.do { array C[3]; ... }
E]lj Active screen
E] Total

EI:I Player A Choose: OUT(C[1])
..m Player B Choose: OUT(C[2])
M Player C Choose: OUT(C[3])

..[T71 Waitinnscreen

Multimedia Box

Path location of file

[Enlage to fit
¥ Shrink to fit

¥ Maintain aspect ratio

Narme I v with frame oK I
Distance to the margin [p/%] Adjustment to the remaining box Cancel |
Width [p/%] | |uz ‘
(u] -
Height [p/%] | [0 [0% I left I right _.-
I bottom .-
20% -
Display .-
condition - -
. -
-
. -
File name |\\Mac\Home\Desktop\ZTHEE\PlI:.png"
— Resizing options = Yideo/Sound options

Volume [0.100] |

Start after [zec.] I

[Dorepeat

[&llow user control

<4~ . I Rewind

b

EJ. Stage 4 (find(Type==2, DecisionB) != -1 & find(Type==3,DecisionC }!=-1)|= (30)

Manage distortions

STAGE |

B Chooses a number

STAGE |1

As per normal

@ Example 8.zt
p

@ Background
+-& Stagel =|= (30)

=

H

- Stage 2 =|= (30)N

% subjects.do { Participate = if(Type==1| Typ§

E]Q Active screen
== Player A
¢ L. Enter a Number: IN{ DecisionA)

[Waitingscreen

f-i Stage 3 (count(Type == 1 & DecisionA > 0) =3
[3-». Stage 4 (find(Type==2, DecisionB) != -1 & find(]

% subjects.do { array C[3]; ... }

=-[[@) Active screen

== Total
. Player A Choose: OUT(C[1])
EI:I Player B Choose: OUT(C[2])
EEI Player C Choose: OUT(C[3])
. Total: OUT(Total)

--{_] Waitingscreen

Stage

i

Mame Stage 2

0K

— Start
& wiait for all

" Start if possible
" Start ...

[x 1
Cancel |

— Mumber of subjects in Stage

[At most one per group in stage

— Leave stage after timeout

" If no input " Yes

* No

Timeout an

STAGE I1l

count (Type

% subjects.do { Participate = if(Type==3,1,0); ... }
Ej@ Active screen
=3 Player C
CD Player A Choose: OUT(DecisionA)
ED Enter a Number: IN(DecisionC)

-[_] Waitingscreen

-y Stage 4 (find(Type==2, DecisionB) != -1 & find(Typed

% subjects.do { array C[3]; ... }

=-[[8) Active screen

= Total
. Player A Choose: OUT(C[1])
ED Player B Choose: OUT(C[2])
CD Player C Choose: OUT(C[3])
. Total: OUT(Total)

-[_] Waitingscreen

1 & DecisionA > 0

E|. Stage 3 (count(Type == 1 & DecisionA > 0) == count(Type == 1])|= (30)

& Startif count Type ==1 & Decisiond > 0] ==¢c

— Mumber of subjects in Stage

™ At most one per group in stage

— Leave stage after timeout

" Yes " No

@ |f no input

Timeout an

) == count(Type == 1)

I

1

I

Stage : ﬁ
Mame Ctage 3 oK.

= N e m -
*— Start Cancel
I wait for all
I O Startif possible

STAGE IV

find (Type==2, DecisionB) != -1 & find(Type==3,DecisionC) !=-1

E]. Stage 4 (find(Type==2, DecisionB) != -1 & find(Type==3,DecisionC)!=-1)|= (30)
% subjects.do { array C[3]; ... }

E][Q Active screen - | X |
- == Total

CD Player A Choose: OUT(C[1]) Name Stae 1 oK

CD Player B Choose: OUT(C[2])

CD Player C Choose: QUT(C[3]) ~ Start Cancel

[Total: OUT(Total) " Wait for al

[0K " Start if possible

[0 Waitingscreen & gty |find(Type==2, DecisionB) 1= -1 & find(Ty

— Mumber of subjects in Stage

™ &t most one per group in stage

EXAMPLE IX

CHAT BOX

DESIGN

N=4 players are separated into 2 groups.

They have two chat boxes

Box | (Left): Sends message to everyone

Box 2 (Right): Sends message only to same group members

Period

1 of 1

Remaining time [sec]: 0
FPlease reach 3 decision.

S2, Box 1: HI Everyone
S1, Box 1: Hows the weather

S1, Box 1: Lets be nice this round

S1, Box 2: Lets be mean to the others
S1, Box 2: They wont know what we are saying

m

CONSIDERATIONS

We use the contracts table.

This is how the data looks like

Period Owner Box t Group [TimeChat(
1 2 1 “HI Everyone © 1 22
1 1 1 "Hows the weather " 1 12
1 1 2 “Lets be mean to the others” 1 0
1 1 2 “They wont know what we are saying”™ 1 -12
1 1 1 “Lets be nice this round™ 1 -22

CHAT STAGE

We first program the Box | . . 999 9,93 .
pProg Input variable is "t Only ”t” associated
7 . o
>treatment >new box >New Chat ; with Box==1 is
[+-@P Background - - £ o
E]. Chat =|= (30) Chat Box , ﬁ |ISted
5% contracts.do{ ..} s +
vvvvv Owner = -1; Name IE]] v With/ﬁrame oK 7
----- Box = -1; Distance to lbe margin [p/%] - Adjustment to the remaining box - K
=-{[m] Active screen IDZ' Caricel |
= OEET AL L Width [p/%] |50% . /
= &S] AILIN{ tncontzacts(Box== o 4 - [~ top . .
IE]% contracts.do{ e } Helght [p“.lz] Ii I Z /~ I |eft [_ nght ‘/
- Owner = :Subject; ~ ’ I L S
B l . /
| Group = :Group; 7 .
. i _ o /
Co Box=l Display 7 ,
-] Group: IN(t), contracts(Boy condition / :
-{_] Waitingscreen / J
. /
l./ ,.
Table I cont}acts L] K4
Input war. It » Mumber of characters | /~/Number of lines I
Condition |Box== >
Output text [<>S<0wnerl1>, Box <Box1>: <tl-1>

v o~
-,
-,

<>S<Owner| 1>, Box <Box|1l>: <t|-1>

[Wrap test ™ Dutput texf centered

CHAT STAGE

Now we program the Box 2

[#-@P Background

® o & Chat =|= (30)

[_:_]% contracts.do{ ...}
..... Owner = -1;
e Box = -1;
=-{m] Active screen
m-EE] All: IN(t), contracts(Box==1, <>
EQ] Group: IN(t), contracts(Box==2
EI% contracts.de { ..}
vvvvv Owner = :Subject;
- Group = :Group;
P Box=2;
-{_] Waitingscreen

Chat Box X
Name I IV with frame oK
Distance to the margin [p/%] Adjustment to the remaining box
IDZ— Cancel
width [p/%] [50% ™ top -
|0% I left I~ right

o |
Height [p#%] I ™ bottom

Dizplay
condition

Table I contracts LI

Input war. It Mumber of characters I Mumber of lines I

Condition |Box==2 & Group==:Group

Dutput text |<>S<0wner1>, Box <Box1>: <t-1>

[Wrap test [Dutput test centered

EXAMPLE X

2 DIMENSIONAL
GRAPHING

Values

DESIGN

Players enter 3 numbers

e Each number between 0-5)
.
The 3 numbers are graphed as bars |
. /.
The 3 numbers are graphed as line chart 5
/
.
.
!
./.
Input Num 1: R4
'/
Input Num 2: !
Input Num 3: '
) v

* We are going to utilise the contracts table

BACKGROUND

B ’ Background
. {5 globals
----- @ subjects

----- @ summary
----- @ contracts

----- @ session

o Subject = 1
% subjects.do{ ..
é - array Num[3] <
E] {3 Active screen

Ell:l Waitingscreen
= Text
... Please wait

— -
-
— -
-
-
— -
-
-
— -
-
-
— -
-
-

Numbers will be
sorted in the
contracts table

— =
-——
— -
-
-
— -
-
-
— -
-
-
— -
-
-

Subjects enter 3
numbers

until the experiment continues.

STAGE |

El. Input Values =|= (30)N
: E@ Active screen
. = standard
.0 Input Num 1:: IN(Num(1])
-0 Input Num 2: IN(Num([2])
.00 Input Num 3:: IN(Num(3])
== Submit
E% subjects.do{ ... }
..... iterator(i,3).do{
..... contracts.new{
- =
- Subject = :Subject;
- Value = Numl[i];

Input Num 1:
Input Num 2:

Input Num 3:

STAGE Il (BAR CHART)

== Bar Chart =|= (30)

E]E Active screen
- =13 Standard >treatment >New Box >New Plot box

— - -
-
-
-
-
-
. -
I
-— -
-
-— -
. -

=7 Plot [0,31x0,5] «
=%« Bar: graph: contracts(Subject == :Subject)
O /10,] Plot Box

e X-axis:
X ax.ls x(0) Name |ﬁm— [V with Frame
: L y-axis: y(0)
P — Distance to the margin [p/%) Adjustment to the remaining box
Width [p/%] I Ii Cancel |
Height [p/%] I [~ top
I I [left I right
™ bottom
10%
Dizplay
condition
Horizontal margin | Vertical margin
Fill col
ﬂl I IV Maintain aspect ratio
[wavis Y-aris .
; @ categorical ¢ linear ¢ logarithmic ' categorical ¢ linear O logarithmic |
left ID top |5 |
! right |3 bottom ID |
o e s e e e e et et e s s a s s —
Move pointer to I I

STAGE Il (BAR CHART)
DEFINE THE AXIS

== Bar Chart =|= (30)
- =-[m] Active screen
- - Standard

- mBEPlt3xos
: E]"-.'“v Bar: graph: contracts(Subject == 'Su‘djéét,)
S = I VA0 (V) IR
J-+u X-axis: x(0) « }
b y-axis: y(0)

>treatment >Graphics >New Axis

-
.-t
-

Plot Axis

(S

Mame

position
fram
ta
tick distance

arid from
to

increment

data label distance

layout

caption

line colurl

line width

Dizplay condition

IX-axis

* w-avis " peaxis

[T

|u

|3

|1

[

[1

|Num1 - Num3

|rgb(0.00,0.00,0.00)

[

Cancel |

STAGE Il (BAR CHART)
CONNECT DATA TO PLOT

=& Bar Chart =|= (30)
: =l Q Active screen
: - =5 Standard

.-
. -
. -

>treatment >Graphics >New Rect

. -
.-
. -
. -
—_
-

-
.
. -

MName || 0K
i width |1 N
ance
Y I height |Value
— Position I
|0
ine color| [rgb(0.00,0.00,0.00]
line width |1
fil color| |rgb(1.00,0.00,0.00)
Picture file name I
I resizetofit [~ maintain aspect ratio [centered
Dizplay condition

STAGE III (LINE)
SETUP

E]. Line Graph =|= (30}
=-{m] Active screen
== Standard

=B Plot [0,31x[0,5]
=% Line: graph: contractg(Subject == :Subject)

R -] |,Value S, Plot Graph

~
.

- cxctie e

m X-axis: x(0) s
| b y-axis: y(0)
-.[_] Waitingscreen

'~ Mame

Table

Condition

Sorting

Connection:

line culorl

line width

fll color |

Dizplay condition

Line,

I contracts ;I

Subject == :Subject

|rgb(0.00,0.00,0.00)

|1

[Fill to x-axis

[Connect to previous point

Cancel |

STAGE III (LINE)
CONNECT DATA TO PLOT

E]. Line Graph =|= (30}
=-{m] Active screen
== Standard

=B Plot [0,3](0,5]
=% Line: graph: contracts(Subject == :Subject)
oo iValuew. _

J-H-I-H X-axis: x(0) el - Plot Point |23+
bt y-axis: y(0 Trsel
o Y y(©) = Name I 0K
-.[_] Waitingscreen
A Iﬂ Cancel
1 |Va|ue

I i a star [not polygon)

Size |5

Num vertices |4

Start at [angle from x) |45

Line color| [rgb(0.00,0.00,0.00]

Line width |1

Fill color| |

Dizplay condition

EXAMPLE Xl

GRAPHING PIE
CHARTS

DESIGN

There is a PIE of money (e.g., $100)

Player chooses how much to offer to the Other (between 0 and 100)

Player sees the offer in a
* Pie Chart
* %is plot

E]% subjects.do{ ... }
P PIE = 100;

IGN

.. OFFER=0;

E]D Waitingscreen
E] Text
.. Bitte warten Sie, bisdas E
]«-E, Make Decision -= (-1)N
E]@ Active screen
- =B INeUT
EE] How much do you want i

..... [] Waitingscreen
|-y Stage =|= (30)
E]‘% subjects.do{ .. }
: R = OFFER / PIE * 360:
- P = OFFER / PIE * 100;
E]@ Active screen
~ =-E3 PIE BOX [0,100]x[0,100]
.3 BACK: (50,50) 50, 50 [0+3t
.5y INPUT: (50,50) 50, 50 [0+F

L TEaT <><P|.01> %(50,50)

Ei]u BUTTONBOX

EXERCISE IV

SSW MARKETS

DESIGN

N>2 Traders each endowned

 6assets

1000 cash

Trade takes place over 3 periods (inventory are carry forwarded at each period)
Assets pay dividend 0, 20, 40 or 60 with equal probabilities

* Realised only at the end of the period

CDA market trade where plot are prices is presented to subjects

X-axis time

* Y-axis transacted price

