CHAPTER 3
 A CRASH COURSE IN ZTREE

Lawrence Choo, PhD

LESSON PLAN

- Introduction to z-tree
- Ztree architecture
- How to setup your zleafs
- Example I:The Public goods game
- Basic programming
- Generating Input / Output variables
- Example II:The Ultimatum Game
- Grouping mechanism (more programming)
- Sequential decision making
- Rich text format (rtf) coding
- Class Exercise I: Second Price Auction

LESSON PLAN

- Creating multiple leafs on a screen
- Example III: 2x2 Normal form game
- Laying out Grid matrix
- Random round payment
- Example IV: Search Lottery
- Array programming and complex loops
- Programming a Survey
- Class Exercise II: Jackpot machine (A fair jackpot)
- Example V: Dutch Auction
- the "later" function
- Class Exercise III: English Auction

LESSON PLAN

- Example VI: Continuous Double Auction
- Introduction to the Contract table
- Example VII: Random Stopping Public Goods Game
- Creating infinite length games
- Example VIII: Complex Move games
- Inserting Figures /Videos
- Designing complex sequential move formats
- Example IX: Chat Box
- Example X: 2-Dimesion Graphing
- Bars
- Lines
- Example XI: Graphing Pie Charts
- Exercise IV: Vernon Smith, Gerry Suchanek and Arlington Williams (I988) design with Graphed prices.
installing ZTREE AND A BRIEF INTRODUCTION

CLIENT-SERVER ARCHITECTURE

INSTALLING "LEAFS"

- Create multiple shortcuts for the zleaf
- Go into the properties of each shortcut leaf click on the properties dialog, click on the shortcut tab and append the

.exe Iname Yourleafname

- Do this for every shortcut leafs giving a unique name

WHAT IS IN AN EXPERIMENT

- The whole experiment.This might contain multiple treatments
- A specific treatment setup.
- A treatment might contain multiple periods (i.e., rounds)
- A specific period.

Period

- This might contain multiple stages
- The lowest level, where subjects input / output variables are collected

HOW IS DATA STORED

Data is stored in numerical values in "pre-specified Tables".

Name	written	Reset Freq.	Description
global	Every period	Every Period	Input / Output variables that affect ALL subjects
subjects	Every period	Every Period	Input / Output variables that affect a specific subject
contract	Every period	Every Period	Input / Output variables that affect a specific subject within a period
summary	Every period	Every Treatment	Input / Output variables that affect a specific subject over a treatment
session	Every treatment	Every Session	Input / Output variables that affect a specific subject over a Session

ztree also allows for user created tables in addition to the above

EXAMPLE I

THE PUBIC GOODS GAME

EXAMPLE: PUBLIC GOODS GAME

$$
u_{i}=E-x_{i}+\frac{\sum_{i} x_{i}}{N} \times M
$$

globals table

Period	NumPeriods	RepeatTreatment	M	E	N
2	5	0	1.2	10	4

subjects table

Period	Subject	Group	Profit	TotalProfit	Participate	x	sum x	u
2	4	1	12.65	18.65	1	2	15.50	12.65
2	5	2	11	15.45	1	2	10	11
2	6	2	12	20.10	1	1	10	12
2	7	2	9	10.00	1	4	10	9
2	8	2	16	22.12	1	3	10	16

SET BACKGROUND

- 4 Subjects
- All subjects in same group
- $\mathrm{t}=2$ periods

General Parameters

Number of subjects	4	
Number of groups	1	OK
		Cancel

0
Cancel
\# paying periods
2
Exch. rate [Fr./ECL] 1
Lump sum payment [ECL] 0
Show up fee [Fr.]
Bankruptcy rules..

Start time of the period

$$
\begin{aligned}
& \text { Compatibility } \\
& \Gamma \text { first boxes on top }
\end{aligned}
$$

Options

Γ without Autoscope

DEFINE INITIAL VALUES
 （globals table）

＞Treatment＞New program

```
N = 4; //no. of players in a group
E = 10; // endowment
```

$\mathrm{M}=1.2 ; / /$ multiplier

```
圆 Untitled Treatment 2
\square\square回星
\square}\mathrm{ Background
    E/ globals
    E) subjects
    E summary
    E) contracts
    E) session
    Allogfile
    \square}\mathrm{ Active screen
        \square Header
    \squareWaitingscreen
        G 国 Text
\(\square\) Please wait until the experiment continues．
```


DEFINE INITIAL VALUES
 （subjects table）

＞Treatment＞New program

$X=0 ; ~ / / d e f i n e ~ v a r i a b l e$
SUMX $=0$ ；
$U=0 ;$

```
固 Untitled Treatment 2
    \square\square回沶
\square}\mathrm{ Background
    E) globals
    E}\mathrm{ subjects
    F}\mathrm{ summary
    B}\mathrm{ contracts
    F
    E logfile
    -M.* globals.do {//Use"//" to insert comments...
    - Active screen
    \square Header
    \squareWaitingscreen
        G国Text
        \squareDPease wait until the experiment continues.
```


CREATE NEW STAGES

- Select the most recent stage

> > Treatment > New stage

- You can add as many stages as necessary
- Create "Decision stage"
- Create "Results stage"

DECISION STAGE

(create new box)

- A box contains
- Output variables that subjects see
- Input variables that subjects enter

Active screen > Treatment > New Box > Standard Box

GENERAL
 (box layout)

- Box can be position one after another
- Types of boxes:
I. Standard box

2. Grid box
3. Header box
4. Help box
5. History box
6. Container box

7. Calculator button box

GENERAL
 (box layout - Container Box)

GENERAL
 (box layout - Grid Box)

- 田 Gid

column by column

row by row

DECISION STAGE (Putting items in Box)

- Creating a Output variable

Standard box > Treatment > New item

Text that subjects see "Your Endowment"

The output variable "E"

How the output variable is presented:
"|": no decimal places
". I": I decimal place
". 0 I" $: 2$ decimal places

DECISION STAGE (Putting items in Box)

- Creating a input variable

Standard box > Treatment > New item

GENERAL
 (input / output formats)

Layout	Input variable	Output variable
2	6	6
!text: $7=$ "seven"; $8=$ "eight"; $9=$ "nine";	seven	seven
!radio: $1=$ " 86.8 "; $24=$ " 102.8 ";	$\begin{aligned} & \text { C. } 86.8 \\ & \text { C } 102.8 \end{aligned}$	$\begin{aligned} & 686.8 \\ & \text { © } 102.8 \end{aligned}$
!radioline: $0=$ "zero"; $5=$ "five"; 6;	zero CCOCOClive	zero COECOC five
!radiosequence: $7=$ "seven"; $8=$ "eight"; $9=$ "nine";	\bigcirc seven \bigcirc eight C nine	\bigcirc seven $¢$ eight C nine
!slider: $0=4 \mathrm{~A}^{\prime \prime}$; $100=$ " ${ }^{\prime \prime}$; 101;		A - 日
!scrollbar: $0={ }^{\text {L }} \mathrm{L}$ "; $100=$ " $\mathrm{R}^{\prime \prime}$; 101 ;	I - +R	L \dagger - P
!checkbox: 1="check me";	F- check me	V checkme
!button: $1=$ "accept"; $0=$ "reject";	accept reject	accept
1string		
20		Hello World

DECISION STAGE (Putting items in Box)

- Creating a button

Standard box > Treatment > New Button

A button tells ztree to collect the data and let the subject leave the stage.

- Easy to forget
- Without a button, subjects get "stuck" on the screen

DECISION STAGE

 （trial the Decision Stage）

 （trial the Decision Stage）}
run＞start treatment

```
固 Public Goods Game.ztt
\squarePackground
    |
        F
        E) summary
        E}\mathrm{ contracts
        El
        E}\mathrm{ logfile
    $% globals.do {N=4;//no. of players in a group ...}
    @) subjects.do {X=0;//define variable ... }
    -D Active screen
        \square Header
    \squareWaitingscreen
        G FT Text
            \squareDlease wait until the experiment continues.
    #}\mathrm{ 亘 Decision Stage =|= (100)
    -D Active screen
        B国 Standard
            \square\our Endowment: OUT(E)
            How much do you want to contribute?: IN(X)
            \squareOK
```

```Waitingscreen
```


GENERAL
 (How to "force subjects to leave a stage"?)

- run > client's table
- Double click
- run > leave stage

RESULTS STAGE (collect the data from other subjects)

Results Stage> Treatment > New program (subjects table)

- Find the contributions of all other players within the same group

```
SUMX = sum(same(Group), X);
```

- Compute payoff

$$
U=E-X+(S U M X) * M / N ;
$$

Alternative code

```
SUMX = average(same(Group), X);
```

$U=E-X+S U M X * M$;

GENERAL

(how programs run)

GENERAL

(how programs run)

GENERAL

(how programs run)

$$
\begin{aligned}
& \mathrm{M}=20 ; \\
& \mathrm{x}=\mathrm{M}-\mathrm{g} ;
\end{aligned}
$$

g	M	x	y					
5	20	15	0					
12	0	0	0					
7	0	0	0	\quad	g	M	x	y
:---:	:---:	:---:	:---:					
5	20	15	0					
12	20	8	0					
7	0	0	0	\quad	g	M	x	y
:---:	:---:	:---:	:---:					
5	20	15	0					
12	20	8	0					
7	20	13	0					

New program
$y=\operatorname{sum}(x)$;

g	M	x	y
5	20	15	36
12	20	8	0
7	20	13	0

g	M	x	y
5	20	15	36
12	20	8	36
7	20	13	0

g	M	x	y
5	20	15	36
12	20	8	36
7	20	13	36

GENERAL
 (Some use scope operators)

```
Y = sum ( [condition] , variable );
Y = average ( [condition] , variable );
Y = minimum ( [condition] , variable );
Y = maximum ( [condition] , variable );
Y = median ( [condition] , variable );
Y = find ( [condition] , variable );
Y = count ([condition] );
```


RESULTS STAGE
 (Create New Box and Output Variabels)

- Active screen > Treatment > New Box > Standard Box
- Standard box > Treatment > New item
- Label: Your Contribution |Variable: X
- Standard box > Treatment > New item
- Label: Total contribution in this period |Variable: SUMX
- Standard box > Treatment > New item
- Label: Your Payoffs |Variable: U
- Standard box > Treatment > New Button

EXAMPLE II

THE ULTIMATUM GAME

DESIGN OBJECTIVES

Design Objectives

- 4 Subjects, 2 groups
- 2 period
- At each period, random allocation to Proposer or Responder
- Random grouping
- \quad Pot $=10$

DEFINE INITIAL VALUES

> Treatment > New program (global table)
POT = 10; //Amount of money to be shared
> Treatment > New program (subjects table)

```
TYPE = 0; //1=Proposer, 2=Responder
OFFER = 0; //Proposer's offer
RESPOND = 0; //Responder's respond 1=Accept 2=Reject
U = 0; //Payoffs
```


MATCHING (BRUTE FORCE)

>Treatment > Parameter table

MATCHING

(a better approach to random grouping)
> Treatment > New program (subjects table)
$G=2 ; / / N u m b e r$ of subjects in a group
$r=$ random(); //Generate a random number between 0 and 1
Create a new program after random variable is created.
> Treatment > New program (subjects table)

```
RANK = count (r >= :r);
```

Group $=$ roundup $(\operatorname{RANK} / G, 1)$;
$>$ Treatment $>$ New program (subjects table)
TYPE $=\operatorname{count}($ same (Group) \& r>= :r);

But there might be ties !!!!!

GENERAL

(scope operator)

$$
Y=\text { count }(g>=: g) ;
$$

Subject	g	y
1	5	3
2	12	0
3	7	0

Subject	g	y
1	5	3
2	12	1
3	7	0

Subject	g	y
I	5	3
2	12	l
3	7	2

MATCHING

(a better approach to random grouping)
> Treatment > New program (subjects table)
$G=2 ; ~ / / N u m b e r ~ o f ~ s u b j e c t s ~ i n ~ a ~ g r o u p ~$
> Treatment > New program (subjects table)
Sum_No_Tie = sum(Subject);
repeat \{
subjects.do \{
$r=$ random();
\}
subjects.do \{ RANK $=$ count $(r>=: r) ;\}$ while (Sum_No_Tie
! $=\operatorname{sum}(\operatorname{RANK}))$;
> Treatment > New program (subjects table)
Group $=$ roundup (RANK / G, 1);
TYPE $=$ count (same (Group) \& r>= :r);

GENERAL
 (useful functions)

```
Y = if ( k < 5 | k >= 10, 1, 10 );
Y = abs ( c -d );
Y = round (a, 0.5 );
Y = roundup ( a, 0.5 );
Y = exp ( random() );
Y = sqrt ( b ^ 2 );
Y = max ( ln ( x ), log ( y ) );
```


SEQUENTIAL PLAY

- Subjects learn about their types (Simultaneous)

STAGE I

- Proposer: Makes an offer

StAGe 2 • Responder:-

- Proposer:-

STAGE 3 - Responder: See Proposer's offer and chooses to accept or reject

- Payoffs are realised (Simultaneous)

STAGE 4

STAGE I
 (Subjects learn about their types)

Solution I: Create two "standard box" and input items

- Label: You are the Proposer in this period
- Label: You are the Responder in this period
in each of the boxes. Use display condition to determine who sees what

STAGE I
 (Subjects learn about their types)

Solution II: create a generic box and in the label section of new item, include

```
<>{\rtf\fs20\qc You have been assigned to Group <Group|1>
and is the <TYPE|!text: 1="Proposer"; 2="Responder"> in
this period}
```

You have been assigned to Group 2 and is the Proposer in this period

GENERAL (rtf codes)

\tab	tabulator
\par	new paragraph
\line	new line
\bullet	bullet
\q1	aligned to left
\qr	aligned to right
\qc	centered
$\backslash \mathrm{b}$	bold
\b0	not bold
\i	italic
\i0	not italic
\sub	small and inferior numbers (index)
\super	small and superior numbers (exponent)
\strike	crossed through
\ul	underline
\ul0	do not underline
\colortbl	Color table. See examples.
$\backslash \mathrm{ffn}$	Text color. n is the index of the color table which is defined by \colortbl.
$\backslash \mathrm{fs} n$	Font size n in units of half a dot. The font size must be explicitly given, otherwise it is larger (24) than usual in z-Leaf.

STAGE 2
 (Proposer makes offer)

We only want the Proposer to enter stage 2
> Treatment > New program (subjects table)
Participate $=$ if(TYPE==1, 1, 0);

```
\exists 骂 Stage 2 = = (30)N
    #.# subjects.do { Participate = if(TYPE==1,1,0);}
    \square Active screen
        \square}\mathrm{ 目 Standard
        \squareO}\mathrm{ Amount in the Pot: OUT(POT)
        \squareHow much for Responder?: IN(OFFER )
        \squareOK
```

```Waitingscreen
```


STAGE 3 (Responder Decides)

We only want the Responder to enter stage 3

> Treatment > New program (subjects table)

```
Participate = if(TYPE==2, 1, 0);
```

OFFER = find (same (Group) \& TYPE==1, OFFER);

- 号 Stage $3=1=(30) \mathrm{N}$
© subjects.do $\{$ Participate $=$ if $($ TYPE $=2,1,0)$;
\square Active screen
- - Standard
\square The pot contains: OUT(POT)
\square Proposer offered you: OUT (OFFER)
\square Your decision: IN(RESPOND)Waitingscreen

The pot contains	10.00
Proposer offered you	3.00
Your decision	Accept
	Reject

STAGE 4
 (Compute payoff)

> Treatment > New program (subjects table)

```
RESPOND = find(same(Group) & TYPE==2, RESPOND);
if(RESPOND == 2) {U=0;}
elsif(RESPOND == 1)
{
    if(TYPE==2) {U=OFFER;}
    elsif(TYPE==1) {U=POT-OFFER;}
}
```


STAGE 4
 (Compute payoff)

ヨ 3 Stage $4=1=(30) \mathrm{N}$
© subjects.do $\{$ RESPOND $=$ find(same(Group) \& TYPE $==2$, RESPOND);.. \}

- Active screen
- 国 Standard
\square The Proposer's offer was : OUT(RESPOND)
- Your Payoff : OUT(U)
$\square \mathrm{OK}$Waitingscreen

CLASS EXERCISE I SECOND PRICE AUCTION

TASK

- $\mathrm{N}=4$ bidders
- Valuations between $[0,100]$ uniform
- Bidders are endowed with $\mathrm{E}=200$
- $\quad 2^{\text {nd }}$ price auction
- In the event of a tie, random allocation amongst all claimants

Some useful scope operators

```
Y = maximum(same(Group), X);
Y = maximum(same(Group) & not(same(Subject)), X);
Y = sum(same(Group), X);
```


POTENTIAL SOLUTION

```
\square
    Background
        E
    F
    F}\mathrm{ summary
    F) contracts
    G) session
    F}\mathrm{ logfile
#}\mathrm{ subjects.do{ ...}
            BID = 0;// Subjects' bid
            HB=0;// Higest Bid in group
            HBO}=0;//Higest bid of all other bidders
            WIN = 0;//1 if win the auction and 0 if not
            SUMWIN = 0;//Total number of winners
            V = random(0*100;//Subjects' valuation for object
            E = 200;//Endowment
            U = 0;//Total payoff
    \square-D Active screen
        \squareHeader
    G
```

```
            Waitingscreen
        G 目 Text
            \square\square Please wait until the experiment continues.
G
马 Submit Bid=|=(30)N
```


POTENTIAL SOLUTION

```
|. S Results =|=(30)N
    # subjects.do { ...}
```

 \(\mathrm{HB}=\) maximum(same(Group), BID);
 HBO = maximum(same(Group) \& not(same(Subject)), BID);
 © subjects.do \(\{. .\).
 WIN \(=\) if \((\mathrm{BID}==\mathrm{HB}, 1,0) ;\)
 \(\rightarrow\) subjects.do \(\{. .\).
 SUMWIN = sum(same(Group), WIN);
 \(\because\) - subjects.do \(\{. .\).
 if(SUMWIN \(>1\)) \(\{\) if \((\) WIN \(==1)\{T=\) random \(0 ;\}\)
 - \()^{\text {S }}\) subjects.do \(\{\)... \}
 if(SUMWIN \(>1)\{\) if(WIN \(==1)\{\) TRANK \(=\) count(same(Group) \(\&\) WIN \(==1 \& T<=: T) ;\}\}\)
 - \(\because\) subjects.do \(\{\)... \(\}\)
 if(SUMWIN \(>1)\{\) if(WIN \(==1 \&\) TRANK! \(=1)\{W I N=0 ;\}\)
 - subjects.do \{ ... \}
 \(\mathrm{U}=\) if \((\mathrm{WIN}==1, \mathrm{E}-\mathrm{HBO}+\mathrm{V}, \mathrm{E})\);
 - Active screen

\square Higest Bid: OUT(HB)
Total Number of Winners : OUT(SUMWIN)
Do Did you win the auction ($1=\mathrm{Yes}, 0=\mathrm{No}$): : OUT(WIN)
V Your Payoff: OUT(U)
$\square \mathrm{OK}$Waitingscreen

| Your Bid | 4.00 |
| ---: | :---: | :---: |
| Higest Bid | 4.00 |
| Total Number of Winners | 1 |
| Did you win the auction $(1=$ Yes, $0=\mathrm{No})$; | 1 |
| Your Payoff | 246.36 |
| | OK |

LESSON PLAN

Day II

- Creating multiple leafs on a screen
- Example III: 2x2 Normal form game
- Laying out Grid matrix
- Random round payment
- Example IV: Search Lottery
- Array programming and complex loops
- Programming a Survey
- Class Exercise II: Jackpot machine (A fair jackpot)
- Example V: Dutch Auction
- the "later" function
- Class Exercise III: English Auction

CREATING MULTIPLE LEAFS ON A SCREEN

MULTIPLE LEAFS

Welcome to	Welcmento
2-Leaf 3.6.7 The client software of 2 -T	2-Leaf 3.6 .7 The client software of $z-T$ ree
Design: Uus Fischtocher	Design: UIs Fischbocher
Programming: $\begin{aligned} & \text { Urs Fischbacher } \\ & \text { Stefan Schmid }\end{aligned}$	Fogesming: Ulis fichbosheer
Copyright © 1998-2016 University of Zurich Department of Economics Schoenberggasse $\mathrm{CH}-8001$ Zurich	Copyright © 1998-2016 University of Zurich Department of Econo Schoenberggasse $\mathrm{CH}-8001$ Zurich CH-8001 Zuich
Welcome to	Welcme to
z-Leaf 3.6.7 The client software of $2-T$ ree	z-Leaf 3.6.7 The client software of 2 -Tree
Design: Uus Fischbsher	Desiger Uis Fischsocher
Programming: $\begin{aligned} & \text { Urs Fischbacher } \\ & \text { Stefan Schmid }\end{aligned}$	Progasming: Uus Firishbocher
	Copyright © $1998-2016$ University of Zurich Department of Economics Schoenbergasse 1 S.H-8001 Zurich
	hitp/mwew teeur.chl

GENERAL (Creating multiple leafs)

- Open "notepad"
- Write command lines
- Save file with suffix .bat (e.g, P4.bat)
- Open ztree and execute bat file

EXAMPLE III 2×2 NORMAL FORM GAME

DESIGN

	Today	Tomorrow
Today	200,200	400,0
Tomorrow	0,400	R, R

- R can be either $300,350,400, \ldots, 800$ with equal probability
- Subjects play 3 periods.
- Control question before starting the experiment
- Random period payment
** Note: Payoffs are symmetric, thus we don't have to worry about types.

INITIAL VALUES
 (globals table)

> Treatment > New Program (globals)
Outcome1 $=0$;
Outcome2 = 200;
Outcome3 $=400$;
Rand $=$ random();

Outcome4 = R;
Last_Period $=3$;

Rand = random();	$\mathrm{Y}=$ Rand*I $\mathrm{X}=$ roundup (Y, I)	$\mathrm{R}=\mathrm{X} * 50+250$	
0.13425	1.4767	2	350
0.85932	9.4523	10	750
0.002	0.022	1	300

INITIAL VALUES
 (subjects table)

$>$ Treatment $>$ New Program (subjects)
$\mathrm{X}=0 ;$ //Own decision
XO = 0; //Decision of other group player
$\mathrm{U}=0 ;$ //Payoff for the period
if'(Pèriod=’=1)
rr $=$ random();
Pay_Period $=$ roundup(rr*Last_Period, 1) +0 ;
Pay_Amount $=0$;
elsif(Period>1)

Pay_Period = OLDsubjects.find(same (Subject), Pay_Period);
Pay_Amount = OLDsubjects.find(same(Subject), Pay_Amount);

GENERAL
 (accessing data from previous period)

- The "lifespan" of the subjects table is only I period - reset at start of each period
- The command "OLDsubjects" accesses the subjects table in the immediate previous period - older periods are not accessible.

Y = OLDsubjects.find(same(Subject), X);

Period	Subject	Group	X	Y
I	1	I	3	0
I	2	I	6	- 0
2	I	I	2	43
2	2	1	9	, 6
3	I	I	5	\bigcirc
3	2	I	2	, 9
4	I	I	3	5
4	2	1	5	2

PROCESS FLOW

- Control Questions (Period I only)

StAGE I

- See R

StAGE 2 - Make Decision

- Realise Payoff

STAGE 3

- See random chosen round and payment from that round (Period = 3 only)

STAGE I

> Treatment > New Program (subjects)

```
Participate = if(Period==1, 1,0);
```

> Treatment > New Checker

The true condition that has to be met.

STAGE 2

Grid Box to show 2x2 matrix
 Standard Box for subject's input

> Treatment > New Box > Grid Box

STAGE 2

STAGE 3

号 Stage $3=1=(30) \mathrm{N}$
subjects.do $\{. .$.
$\mathrm{XO}=$ find(same(Group) \& not(same(Subject)), X);
? subjects.do \{ ... \}
if $(\mathrm{X}==1 \& \mathrm{XO}==1)\{\mathrm{U}=$ Outcome2; $\}$
elsif $(\mathrm{X}==1 \quad \& \mathrm{XO}==2)\{\mathrm{U}=$ Outcome3; $\}$ elsif $(X==2 \quad \& X O==1)\{U=$ Outcome1; $\}$ elsif $(\mathrm{X}==2 \& \times \mathrm{O}=2)\{\mathrm{U}=$ Outcome $4 ;\}$
-
Active screen

- \quad B Standard
\square Your Payoffs for this round: OUT(U)
G
G subjects.do \{ ... \}
if(Period $==$ Pay_Period)
\{
Pay_Amount = U;
\}Waitingscreen

Only update the Pay_Amount if the period is exactly that of the pre-determined payment period.

STAGE 4

```
G}\square\mathrm{ Stage 4 =|= (30)N
    \square
        Participate = if(Period==Last_Period, 1,0);
        Active screen
\square}\mathrm{ 国 Standard
            \square \text { Selected payment round: OUT(Pay_Period)}
            \square \text { Payment Amount: OUT(Pay_Amount)}
            \square O K
                G}\mathrm{ 田 History
                    \square\square Period: OUT( Period)
                \square \mp@code { Y o u r ~ P a y o f f : ~ O U T ( U ) }
            \squareWaitingscreen
```

Period	Your Payoff	Selected payment round Payment Amount	$\begin{gathered} 3 \\ 200 \end{gathered}$	
1	0			
2	0			
3	200			
				OK

EXAMPLE IV
SEARCH LOTTERY

DESIGN

- Search for an "Object" by putting in some effort level $\{0,5,10,15, \ldots ., 100\}$, which denotes the probability of finding a Prize (worth $\$ 50$)
- Greater effort corresponds to greater cost.
- Run Survey after session
- Note:When a subject chooses an effort level, he gets to observe the corresponding cost first to which he has to confirm - he is able to revise his decision.

| EFFORT | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | \ldots | \ldots | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COST | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | \ldots | \ldots | 40 |

SOME CONSIDERATIONS

The simple approach

```
// Effort is the input parameter
if(Effort == 0) {Cost = 0;}
elsif(Effort == 5) {Cost = 2;}
elsif(Effort == 10) {Cost = 4;}
elsif(Effort == 100) {Cost = 40;}
```

Can we do this more efficiently?

```
// Effort is the input parameter
```

Cost $=$ Effort/5*2;

However, this is because this example's parameters are convenient - Lets think about this for the more general case.

GENERAL (the Array Parameter)

```
defines an array with indices from l to n
arrayvar[ n ];
defines an array with indices from x to y
array arrayvar[ x, y ];
defines an array with indices from x to y with distance d.
array arrayvar[ x, y, d ];
```


USING THE ARRAY

```
Cost = 0;
array C[0,20]; // define the array
//Input variables into the array
C[0] = 0;
C[1] = 2;
C[2] = 4;
C[20] = 40;
//Now match the effort to the C array
Cost = C[Effort/5];
```

Suppose that we are too "lazy" to input C[0],C[I],...,C[20]

GENERAL (generating loops)

```
Basic Loop
if ( condition ) { statements if condition is true;}
elsif ( condition) {statments if condition is true;}
```


While Loop

```
while( condition ) {statements if condition is true; }
```


Repeat Loop

```
repeat { statements } while ( condition );
```


Iterate Loops

iterator (varname, y) //runs from 1 to y
iterator (varname, x, y) //runs from x to y
iterator (varname, $x, y, d)$
//runs from x to y with steps of d.

GENERAL
 (generating loops)

Calculating: $Y=1+4+9+16+25=55$
Y = 0;
iterator (i,5).do
: $Y=: Y+i \neq i ;$

i	Y	i	Y	i	Y		
1	1	1	1	1	1		
2		2	5	2	5	i	Y
3		3	-	3	14	5	25
4		4		4	30		
5		5		5	25		

INITIAL VALUES

```
// Globals
Prize = 50;
array C[0,20];
iterator(i,21).do {
    C[i-1] = (i-1)*2;
}
```

```
/ / Subjects
Effort = 0;
Cost = 0;
Box = 0;
U = 0;
Find = 0;
```

- Choose Effort (and see Cost)

STAGE I

- See Search Outcome
STAGE 2

STAGE I

STAGE I

Your Search Cost
12.00

STAGE 2

GENERAL
 (session table)

- One row per subject

Subject	FinalProfit	ShowUpFee	ShowUpFeel nvested	MoneyAdded	MoneyToP ay	MoneyEarne d	X
1	12.65	0	0	0	0	0	3
2	11	0	0	0	0	0	4
3	12	0	0	0	0	0	56
4	9	0	0	0	0	0	8
5	16	0	0	0	0	0	9

SURVEYS

SURVEYS

\geq Questionnaire > New Question Form

> Questionnaire > New Button

SURVEYS

SURVEYS

Explain your behaviour
\square

CLASS EXERCISE II

 JACKPOT MACHINE
TASK

- Do a simple jackpot machine consisting of two numbers (I,2,..,IO).
- Subject wins a prize if the two number are identical.
- Subject gets to "spin" the jackpot as many times as he wants - subjected to budget constraint.
- For each spin:
- Some money gets deducted (Tokens cost)
- New random numbers $(1,2, \ldots, 10)$ are generated
- Prize money is added if subject wins
- Subject can also decide to leave the jackpot and cash out

POSSIBLE SOLUTION

Background
（ 힝 globals
（6）subjects
Es summary
（e）contracts
－session
后 logfile
globals．do \｛ ．．．\}
Prize $=10$ ；
Cost $=0.5$ ；
－subjects．do \｛ ．．．
Money＝100；
Box $=0$ ；
Won＝ 0 ；
TimesWon＝0； array R［1，2］；
Active screenHeaderWaitingscreen
国 Text
\square Please wait until the experiment continues．

Spin $=1=(-1)$
－Active screen
国 Play
Your Money：OUT（Money ）
\square No of times you won：OUT（TimesWon ）

\square Leave

\square Spin
V Money＞$=$ Cost
－subjects．do \｛ ．．．\}
Box＝1；
Money $=$ Money - Cost；
iterator（ $\mathrm{i}, 2$ ）．do \｛
$R[i]=$ roundup（random 0 ＊ 10,1 ）；
\}
if（ $(R[1]==R[2])$
\｛
Won＝ 1 ；
TimesWon＝TimesWon +1 ；
Money $=$ Money＋Prize；
\}

1st Number：：OUT（R［1］）
\square 2nd Number：：OUT（ R［2］）
\square Did you win（ $1=$ Yes， $2=$ No）：OUT（ Won ）
\square Leave
$\square \square$ Back
B．Subjects．do\｛... ］
Box $=0$ ；
Won＝ 0 ；Waitingscreen

POSSIBLE SOLUTION

Your Money $\quad 100.00$
No of times you won 0

1st Number:	8
2nd Number:	1
Did you win (1=Yes, 2=No)	0

EXAMPLE V
 DUTCH AUCTION

DESIGN

- There is I object that is to be sold between 4 bidders
- The auction starts at the Price of $\$ 150$.
- Every 3 seconds, the Price reduces by $\$ 10$.
- A Bidder buys the object at the stated price by clicking the "Buy button"
- The auction ends for everyone in the group once someone in the group buys the object.

GENERAL
 (the "later" function)

later(expression) repeat \{ statements \}
Note that the function does not have a build-in "while" condition.

```
Background > Treatment > New Program > Globals
```



```
!later(3) repeat
! {
P = P-10; //Every 3 seconds reduce price by $10!
```

Prices can go below 0 !

BACKGROUND (INITIAL VALUES)

© ${ }^{\text {O }}$ subjects.do $\{\mathrm{E}=200 ; \ldots$,

- \quad Active screen
\square Waitingscreen
 - 国 Text
\square Please wait until the experiment continues.

```
P = 150;
R = 80;
later ( 3 ) repeat
{
```

```
P = P - 10;
```

P = P - 10;
if(P<R)
if(P<R)
P = R;
P = R;
}
}
}

```
```

E = 200;
V = random()*100;
U = 0;
Buy = 0;
Final_Price = 0;

```

\section*{AUCTION STAGE}


\section*{AUCTION STAGE}

Auction \(=1=(60)\)
\(\square\) Active screen
国 Standard
\(\square\) Price: OUT(P)
\(\square\) Your Valuation: OUT( V )
\(\square \square\) Buy
\(\ddagger\) subjects.do \(\{\) if( sum( same( Group ), Buy ) \(==0\) ) ...\}Waitingscreen
\begin{tabular}{rr} 
Price & 120.00 \\
Your Valuation & 85.88
\end{tabular}

\section*{RESULT STAGE}

Auction Price \(\quad 110.00\)

Did you win? ( \(1=\) Yes, \(0=\) No \() \quad 1\)
Your Valuation 85.88
ヨ. B Outcome =1= (30)
- \()^{2}\) subjects.do \{...1
if(Buy==1)
\{
\(\mathrm{U}=\mathrm{E}\) - Final_Price +V ;
\}
elsif(Buy==0)
\{
\(\mathrm{U}=\mathrm{E}\);
\}
- - Active screen
- 国 Standard
\(\square\) Auction Price: OUT( Final_Price)
\(\square\) Did you win? ( \(1=\mathrm{Yes}, 0=\mathrm{No}\) ): OUT( Buy)
\(\square\) Your Valuation: OUT(V)
\(\square\) Your Money: OUT(U)
\(\square\) Next RoundWaitingscreen

\section*{CLASS EXERCISE III}

ENGLISH AUCTION

\section*{DESIGN}
- There is I object that is to be sold between 4 bidders
- The auction starts at the Price of \(\$ 0\).
- Every 3 seconds, the Price reduces by \(\$ 10\).
- A Bidder in the auction can choose to leave the auction.
- Each time someone leaves, all other bidder sees the total number of remaining bidders
- The auction ends for everyone in the group once there is only I bidder left in the auction - auction price determined.

\section*{POSSIBLE SOLUTION (BACKGROUND STAGE)}
```


Packground

 E/ globals
 |}\mathrm{ subjects
 E summary
 El contracts
 session
 E

globals.do{ ... }

 P=0;
 later (3) repeat
 {
 P = P+10;
 }
 -S subjects.do{ ...}
V = random0*100;
E =200;
Stay = 1;
U=0;
Left = count(same(Group));
Final_Price = 0;
\square
Active screen
Header
\squareWaitingscreen

```

\section*{POSSIBLE SOLUTION (AUCTION STAGE)}
```

\squareAuction Stage = = (30)
\square}\mathrm{ Active screen

```
        - El Standard
            \(\square\) Price: OUT(P)
            \(\square\) Your Valuation:: OUT (V)
            \(\square\) No. of Bidders Left: OUT ( Left)
            \(\square\) Leave Auction
Your Valuation: \(\quad 28.27\)Waitingscreen

\section*{POSSIBLE SOLUTION (RESULT STAGE)}
```

Final Price }\quad70.0
Did you win? (1=yes, 2=No) 0
Your Money 200.00

```

\section*{LESSON PLAN}

Day III
- Example VI: Continuous Double Auction
- Introduction to the Contract table
- Example VII: Random Stopping Public Goods Game
- Creating infinite length games
- Example VIII: Complex Move games
- Inserting Figures /Videos
- Designing complex sequential move formats
- Example IX: Chat Box
- Example X: 2-Dimesion Graphing
- Bars
- Lines
- Example XI: Graphing Pie Charts
- Exercise IV: Vernon Smith, Gerry Suchanek and Arlington Williams (I988) design with Graphed prices.

EXAMPLE VI
CONTINUOUS DOUBLE AUCTION MARKET

\section*{DESIGN}
- One-Period market involving \(\mathrm{N}=4\) traders
- Each trader endowed with \(\$ 1000\) and 10 assets
- Trade facilitated through continuous double auction


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Period & Seller & Buyer & Maker & P & Traded & \begin{tabular}{c} 
contractl \\
D
\end{tabular} & tradell \\
\hline I & 3 & - I & 3 & 50 & 0 & 1 & 0 \\
\hline I & 3 & -1 & 3 & 45 & 0 & 2 & 0 \\
\hline I & 4 & \(-I\) & 4 & 60 & 0 & 3 & 0 \\
\hline I & 4 & \(-I\) & 4 & 35 & 0 & 4 & 0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Period & Seller & Buyer & Maker & P & Traded & \begin{tabular}{c} 
contractl \\
D
\end{tabular} & tradell \\
\hline I & 3 & -1 & 3 & 50 & 0 & 1 & 0 \\
\hline I & 3 & -1 & 3 & 45 & 0 & 2 & 0 \\
\hline I & 4 & -2 & 4 & 60 & 0 & 3 & 0 \\
\hline I & 4 & I & 4 & 35 & 1 & 4 & 1 \\
\hline
\end{tabular}


\section*{TYPES OF CONTRACT BOXES}


\section*{BACKGROUND STAGE} (initial values)

```

Globals
AuctionTime = 240;
numContracts = 0;
numTrades = 0;
Subjects
Money = 1000;
Stock = 10;
Contracts
Seller = -1;
Buyer = -1;
P}=0\mathrm{ ;
Traded = 0;
contractID = 0
tadeID =0

```

\title{
AUCTION STAGE \\ （initial values）
}

顑 Market＝｜＝（AuctionTime）A
\(\square\) Active screen
国 Inventory
ID Your Money：：OUT（Money）
－Your Stock：OUT（Stock）
\(\pm\) make：Ask：contracts
＋ 囲 To Buy：contracts（ Buyer \(=-1\) ），sorted by：－P；－contractID
\(\pm\) 罡 Contract list：contracts（（Buyer＞0）\＆（Seller＞0）），sorted by：tradeID
早．罣 To Buy：contracts（ Seller＝＝－1），sorted by：P；－contractID
\(\pm\) make：bid：contractsWaitingscreen
－Period
Remaining time［sec］： 112


\section*{AUCTION STAGE \\ （initial values）}
－冎 Market＝｜＝（AuctionTime）A
Active screen
－Inventary
■ Your Maney：：OUT（Money）
\(\square\) Your Stock：QUT（Stock）
\(\rightarrow\) make：Ask：contracts．
† 䍡 To Buy：contracts（ Buyer＇二＝－1），sorted by：－P；－contractID
\(\pm\) 罡 Contract list：contracts（（Buyer＞ 0 ）\＆（Seller＞0）），sorted by：tradeID
＋．．
\(\pm\) make：bid：contractsWaitingscreen






EXAMPLE VII
RANDOM STOPPING PUBLIC GOODS GAME

\section*{DESIGN}
- Publics Good game session which stops at the period with probability \(1 / 2\).
Globals table
RepeatTreatment \(=1\) or 0 ;

EXAMPLE VIII COMPLEX MOVES

\section*{DESIGN}
- Suppose that numbers are between 0-3
- Assume B's number is difficult to determine.
- We thus want \(C\) to start once \(A\) has chosen his number
- We also want to show subjects the below graph - Stage I.


\section*{STAGE I}
>treatment > New Box > New Multimedia box


\section*{STAGE I}


\section*{STAGE II}

\section*{As per normal}


\section*{STAGE III}

\section*{count ( Type \(==1\) \& DecisionA \(>0\) ) \(==\operatorname{count}(\) Type \(==1\) )}

Stage 3 (count \((\) Type \(==1 \&\) Decision \(A>0)==\) cou
\(\pm\) subjects.do \(\{\) Participate \(=\) if \((\) Type \(==3,1,0) ; \ldots\}\)
\(\square\) Active screen
国 Player C
\(\square\) Player A Choose: OUT( DecisionA )
\(\square\) Enter a Number: IN(DecisionC)
\(\square O K\)

\section*{\(\square\) \\ Waitingscreen}
\(\square\) Stage 4 (find(Type= 2 , DecisionB) != \(-1 \&\) find(Type \(=\) +5 subjects.do \(\{\) array C[3]; ... \}
\(\square\) Active screen

\section*{- 国 Total}
\(\square\) Player A Choose: OUT( C[1])
\(\square\) Player B Choose: OUT( C[2])
마 Player C Choose: OUT ( C[3])
\(\square\) Total: OUT( Total)
\(\square O K\)Waitingscreen


\section*{STAGE IV}
```

find(Type==2, DecisionB) != -1 \& find(Type==3,DecisionC)!=-1

```
\(\square\) Stage 4 (find(Type==2, DecisionB) != -1 \& find(Type==3,DecisionC \()!=-1) \mid=(30)\)
甲) subjects.do \(\{\) array C[3]; ... \}
\(-\)
- Active screen
国 Total
        \(\square\) Player A Choose: OUT( C[1])
        \(\square\) Player B Choose: OUT( C[2])
        \(\square\) Player C Choose: OUT( C[3])
        \(\square\) Total: OUT( Total)
        \(\square\) OKWaitingscreen

\section*{EXAMPLE IX}

CHAT BOX

\section*{DESIGN}
- \(\mathrm{N}=4\) players are separated into 2 groups.
- They have two chat boxes
- Box I (Left): Sends message to everyone
- Box 2 (Right): Sends message only to same group members


\section*{CONSIDERATIONS}
- We use the contracts table.
- This is how the data looks like
\begin{tabular}{|c|c|c|c|c|c|}
\hline Period & Owner & Box & \(t\) & Group & TimeChat \\
\hline 1 & 2 & 1 & "HI Everyone" & 1 & 22 \\
\hline 1 & 1 & 1 & "Hows the weather" & 1 & 12 \\
\hline 1 & 1 & 2 & "Lets be mean to the others" & 1 & 0 \\
\hline 1 & 1 & 2 & "They wont know what we are saying" & 1 & -12 \\
\hline 1 & 1 & 1 & "Lets be nice this round" & 1 & -22 \\
\hline
\end{tabular}

\section*{CHAT STAGE}
- We first program the Box I
- >treatment >new box >New Chat


Only "t" associated Background



\section*{CHAT STAGE}
- Now we program the Box 2
\({ }^{\oplus} 9\) Background
- 日昌 Chat =|=(30)
- \(\$\) contracts.do \{ ... \}

Owner \(=-1\);
Box \(=-1\);
-
Active screen
\(\dagger\) All: \(\operatorname{IN}(\mathrm{t})\), contracts( Box \(=1,<>\mathrm{S}\)
\(\square\) Group: \(\operatorname{IN}(\mathrm{t})\), contracts( Box=\(=28\) \(\square\) contracts.do \{ ... \}

Owner \(=\) :Subject;
Group \(=\) :Group; Box =2;Waitingscreen


EXAMPLE X
2 DIMENSIONAL GRAPHING


\section*{BACKGROUND}

Background
globals
© subjects
E summary
Ef contracts
部 session
客 logfile
0
contracts．do \｛ ．．．\}
\(\mathrm{i}=-1\) ；
Value \(=-1\) ；
Subject \(=-1\) ；
subjects．do \｛ ．．．\}
array Num［3］；
Numbers will be
sorted in the contracts table

Active screen
\(\square\) Header
\(-\)
Waitingscreen
－国 Text
\(\square\) Please wait until the experiment continues．

\section*{STAGE I}

畐 Input Values \(=\mid=(30) \mathrm{N}\)
```

\square-D Active screen
G 目 Standard
\square\squareInput Num 1:: IN(Num[1])
Input Num 2:: IN(Num[2])
Input Num 3:: IN(Num[3])
G}\square\mathrm{ Submit

```

Input Num 1:

Input Num 2:

Input Num 3
\(\square\)
\(\square\)
\(\square\)

\section*{STAGE II (BAR CHART)}
- Bar Chart =|= (30)


\section*{>treatment \(>\) New Box \(>\) New Plot box}
\(\square O K\)
\(\square\) Plot \([0,3] \times[0,5]\)
Bar: graph: contracts( Subject \(=\) = :Subject)
- \(\square\) [ \(/ / 1] \times[0\),
. X-axis: \(x(0)\)
...wn-axis: \(y(0)\)


\section*{STAGE II (BAR CHART) DEFINE THE AXIS}

Bar Chart =|= (30)
```

\square}\mathrm{ Active screen
G 国 Standard
\square O K
\square}\mathrm{ Plot [0,3]x[0,5]
-7,."Mar: graph: contracts(Subject ==:Subject)
\square [i/1]x[0,]
M X-axis: x(0)
y+m

```
                >treatment >Graphics >New Axis

\section*{STAGE II (BAR CHART) CONNECT DATA TO PLOT}

Bar Chart =|= (30)
```

\square-D Active screen
\squareB Standard
OK

```
    >treatment >Graphics >New Rect
    - Plot [0,3]x[0,5]

            \(\square[i / 1] x[0\),\(] - \cdot \cdots\)
        W-axis: \(x(0)\)
        1 y-axis: \(y(0)\)


\section*{STAGE III (LINE) SETUP}
- 昌 Line Graph = = (30)
\(\square\) Active screen
- \(\equiv\) Standard
\(\square \mathrm{OK}\)
- Plot \([0,3] \times[0,5]\)
-


\section*{STAGE III (LINE) CONNECT DATA TO PLOT}
- \(\frac{8}{9}\) Line Graph =1: (30)
- Active screen

国 Standard
\(\square\) OK
\(\square\) Plot \([0,3] \mathrm{x}[0,5]\)
(.). Line: graph: contracts( Subject \(==\) :Subject)
Waitingscreen

\section*{EXAMPLE XI}

\section*{GRAPHING PIE} CHARTS

\section*{DESIGN}
- There is a PIE of money (e.g., \$100)
- Player chooses how much to offer to the Other (between 0 and I00)
- Player sees the offer in a
- Pie Chart
- \% is plot
    - Es BUTTONBOX
        \(\square\) OK
    \(\square\) Waitingscreen

EXERCISE IV SSW MARKETS

\section*{DESIGN}
- \(\mathrm{N}>2\) Traders each endowned
- 6 assets
- 1000 cash
- Trade takes place over 3 periods (inventory are carry forwarded at each period)
- Assets pay dividend \(0,20,40\) or 60 with equal probabilities
- Realised only at the end of the period
- CDA market trade where plot are prices is presented to subjects
- X-axis time
- Y-axis transacted price```

